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Abstract

Machine learning aims to learn patterns from data. When the data are
about people, a machine learning model will learn information about people.
Such models can be used by malicious actors to attack the individuals,
whose data have been used in training the model. The goal of privacy-
preserving machine learning is to guarantee that such attacks are not successful.

Differential privacy is a mathematical definition of privacy, based on randomising
the learning process: if the result would have been nearly the same whether
any given individual was present in the training data set or not, then the
result will not violate the privacy of any given individual.

The articles in this dissertation focus on combining differential privacy
with Bayesian machine learning, which is a learning paradigm based on
representing the quantities of interest as probability distributions, and using
the standard rules of probability calculus to update these distributions in
light of the available data to arrive at a posterior. The posterior combines
our prior beliefs with evidence from data.

As for the data, while it is often realistic to consider a single centralised data
set that is directly available for learning, there are also many settings where
the data set is distributed among several parties. In such cases, especially
with sensitive personal data, we want to have learning methods that do not
require centralising all the data, but work directly in the distributed setting.
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In the first article included in this dissertation, we consider differentially
private Bayesian learning from data that are distributed between several
parties. We propose a secure secret sharing method that can be combined
with differential privacy for increased utility. We show theoretically that,
under some assumptions, learning conjugate-exponential family models can
be done efficiently with the proposed method, and empirically test the
method with Bayesian linear regression models.

In the second publication, we introduce a general method for approximating
intractable distributions via sampling from a suitable Markov chain while
guaranteeing differential privacy. The method is based on analysing the
inherently stochastic accept-reject decisions needed to produce samples from
the chain, without the need to add extra randomness for privacy.

In the third article, we develop methods for numerically establishing the
total privacy level in the shuffle model of differential privacy, a specific
distributed learning setting. We show how to improve this privacy accounting
for some algorithms commonly used for guaranteeing differential privacy.

Finally, in the fourth article, we introduce a general framework for approximating
intractable distributions based on variational inference, when the data are
distributed among several parties and we additionally want to minimise the
number of communication rounds between the parties. Within the general
framework, we propose, analyse, and compare three specific alternatives
with varying characteristics.
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Note on the notations

The notation used in this dissertation is fairly standard and aims to be
easily readable. For example, for probability distributions, we overload
the notation in a standard way by identifying the distributions by their
arguments. Therefore, for a distribution pθ(θ) we generally simply write
p(θ). This should not create any confusions.

Considering measure-theoretic backdrops needed for formulating some
definitions and results in a mathematically rigorous way, we generally assume,
e.g., that random variables P,Q : Ω → R are absolutely continuous w.r.t.
some reference measure on Ω, so the Radon-Nikodym derivative dP

dQ is
simply a density ratio. We will write such ratios with lower case p

q with
the understanding that p, q are densities or probability mass functions as
necessary (e.g. in Definitions 5 & 6, and in Section 3.1.3).
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Chapter 1

Introduction

Personal privacy is a fundamental right in a free society. While there
probably has never been a period in history when individual privacy would
not have been under various threats, recent years have seen the emergence
of entirely new possibilities for attacking individual privacy. These changes
are driven by the increase of online interactions in all spheres of life, along
with the advance of machine learning.1

With the advent of mobile computing, sensitive data are often produced
on individual mobile devices. In such cases, centralising all user data for
learning might not be ideal or even possible. For example, centralising
mobile device user data would typically require some form of consent from
the device users and could incur additional costs as well as create a huge
liability to the data curator. Distributed learning methods, such as algorithms
for federated learning (McMahan et al., 2017; Kairouz et al., 2021b), avoid
the problems caused by data centralisation by enabling learning directly on
the distributed data.

However, when the data are used for training machine learning models,
simply keeping the data secure is not enough: when models are trained with
data that are in some sense about individuals, such as web searches, online
shopping histories, or mobility traces, the models can contain information
about specific individuals. A trained model can therefore be used to attack
individuals present in the training data, if the attacker can extract the

1See, e.g., Roser et al. 2015 for estimates on the global number of internet users,
Ferrantino and Koten 2019 for some context on the increase in e-commerce on a global
level, Roussi 2020 for an example case where the space of individual privacy is encroached
upon by machine learning outside any intentional online activity, Villalobos et al. 2022 for
the increase in large-scale machine learning models sizes, Google 2023 for some examples
of data set sizes used for training machine learning models, and Kearns and Roth 2019
for a more general discussion.

1



2 1 Introduction

information from the model (see, for example, Fredrikson et al. 2014, 2015;
Carlini et al. 2019).

Generally, with almost any machine learning model, it is very hard to
know exactly what information the model contains. In addition, there is
also no clear boundary on what is the type of information that could be
used for attacking a given individual: almost anything could be used for
launching an attack when combined with other suitable data.2

The privacy problems with machine learning models are unfortunately
not purely theoretical: there are several known attacks, ranging from training
data reconstructions, where the attacker aims to reconstruct the data points
used for training a machine learning model (Fredrikson et al., 2014, 2015;
Carlini et al., 2019; Balle et al., 2022; Zhu et al., 2019; Zhao et al., 2020;
Geng et al., 2021; Carlini et al., 2021), to membership inference attacks,
where the attacker tries to identify which data points were part of the
training data set (Homer et al., 2008; Shokri et al., 2017; Yeom et al., 2018;
Nasr et al., 2019; Long et al., 2018, 2020; Carlini et al., 2022; Watson et al.,
2022; Ye et al., 2022).

More generally, a classic result by Dinur and Nissim (2003), known as
the Fundamental result of information recovery, shows that too accurate
answers to too many questions inevitably leads to a catastrophic privacy
failure, regardless of any possible protection method employed. Therefore,
any method that aims to protect privacy in learning needs to somehow
quantify exactly how accurate the answers can be for a given number of
queries presented to the data.

The current gold-standard in privacy protection for learning from data is
differential privacy (Dwork et al., 2006b), which formalises mathematically
what it means that an algorithm protects privacy. Differential privacy is
based on having randomness in the answers to the queries presented to the
data, to avoid the catastrophic privacy failure implied by the Fundamental
result of information recovery. The resulting strictness of the privacy-
guarantee can then be quantified with numbers or privacy parameters.

The articles in this thesis mainly focus on differentially private machine
learning, and more specifically, on differentially private Bayesian machine
learning:3 we want to enable updating prior beliefs into more informed

2The problems with identifying what information a model learns or what might be
a problematic prediction affects machine learning also beyond pure privacy concerns.
Identifying and trying to remedy these kinds of issues has lead to a more general emphasis
on trustworthy machine learning, where privacy is one subtopic (see e.g. Varshney 2022;
Barocas et al. 2019).

3See, e.g., Ghahramani (2015) for an accessible high-level introduction to Bayesian
machine learning, and Murphy (2012) for a technical and in-depth presentation.
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posterior beliefs based on data, and we want to do this while protecting the
privacy of data subjects by providing differential privacy.

In order to guarantee individual privacy, however, the first requirement
is to keep the sensitive data secure. As noted above, learning from distributed
data is an important research direction which can help reduce risks in many
settings, e.g., of large-scale data breaches, since the sensitive data are kept
distributed on several devices. For this reason, distributed learning is the
second main thread running through the articles.

On a general level therefore, the aim of the articles included in this
dissertation is to enable privacy-preserving Bayesian learning in any given
setting. The specific questions and the contributions of the publications
are discussed in detail in introducing the required theory for differentially
private Bayesian learning, with centralised as well as with distributed data,
in the following sections. This is done in an effort to clarify how the articles
relate to the larger field of differentially private machine learning. The main
ideas and contributions of the publications are also concisely summarised
in isolation in Section 5.

In the next sections, we first formally define differential privacy and
discuss it’s properties in Section 2, starting with centralised data and ending
by changing to the distributed setting. After thereby clarifying what we
actually mean by privacy-preserving learning, we move on to discuss privacy-
preserving Bayesian learning in Section 3. We start by introducing the main
ideas and methods for standard non-DP Bayesian learning in Section 3.1.
To finish, we review the most relevant existing approaches to DP Bayesian
learning in Section 3.2, and discuss how the included publications fit into
this more specialised field.
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Chapter 2

Differential privacy

At its core, differential privacy (DP) is a stability guarantee on the output
of a randomised algorithm: when a stochastic algorithm guarantees DP, it
means that the observed result would have been almost as likely to occur
with a slightly different input data. Another way to state this is to say that
each sample can only have a limited effect on the output.

The connection to privacy becomes clearer when we think of the input
as containing data on individuals: if changing a single individual’s data
arbitrarily does not alter the output probabilities much, then the output
contains relatively little information about any given individual. Formally,
we have the following:

Definition 1 (DP, Dwork et al. 2006b,a). Let ε > 0 and δ ∈ [0, 1]. A
randomised algorithm M : X → O is (ε, δ)-DP if for every neighbouring
x,x′ ∈ X and every measurable set E ⊂ O,

P(M(x) ∈ E) ≤ eεP(M(x′) ∈ E) + δ.

M is tightly (ε, δ)-DP, if there does not exist δ′ < δ such that M is (ε, δ′)-
DP. When δ = 0, we write ε-DP and call it pure DP. The more general
case (ε, δ)-DP is called approximate DP (ADP).

The strictness of DP guarantees can be tuned with the privacy parameters
ε and δ, while the granularity of the protection depends the chosen neighbourhood
definition. While there is no general agreement on how to choose the privacy
parameters, it is often held that ε should be a small constant, while δ should
ideally be cryptographically small, or increasing slower than any inverse
polynomial in the size of the data set. In practice, commonly used values
are, e.g., ε ≃ 1, and δ < 1

|x| .
1

1While ε is typically taken to be small, even huge values might offer protection against

5



6 2 Differential privacy

While smaller privacy parameters offer better privacy, they also reduce
model utility, e.g., prediction accuracy or model likelihood, since tighter
privacy essentially requires M to be more random. For many standard
algorithms used for guaranteeing DP, however, the utility can be increased
by increasing the amount of data available. Hence, there is always a trade-off
between privacy protection and model utility, but the terms of this trade-off
can often be mitigated by adding more data.

Instead of choosing a single (ε, δ) point, we ideally want to consider the
full range of (tight) privacy parameters achievable by a given randomised
algorithmM. This idea is formalised in privacy profiles:

Definition 2 (Privacy profile, Balle et al. 2018). A function δM : R →
[0, 1], ε 7→ δ s.t. M is (ε, δ)-DP is called a privacy profile function. The
corresponding set of all possible privacy parameter values {(ε, δ(ε))}, ε > 0
is called a privacy profile.

We denote the privacy profile function simply as δ(·) when there is no
risk of confusion. A tight privacy profile, whereM in Definition 2 is tightly
(ε, δ(ε))-DP ∀ε, is a Pareto frontier, which partitions the space of privacy
parameters into the region whereM will satisfy DP and to the region where
it does not.

As is clear from Definition 1, what constitutes a "small change" in the
input space depends on our neighbourhood definition. The most common
DP protection granularity is on the sample level, often called sample-level or
item-level DP, especially in federated learning: the neighbouring x,x′ differ
by a single sample (see Section 2.6 for a discussion on some other possible
granularities in the context of federated learning). When not mentioned
explicitly, we assume that the granularity is on a single-sample level, and
that the database has a single sample per individual. In this case, sample-
level DP corresponds to individual-level DP.

Besides the protection granularity, we also need to choose a neighbourhood
relation. The usual choices are the add/remove relation or unbounded DP,
meaning that we can turn x into x′ by adding or removing a single element,
and the replace or substitute relation, sometimes also called bounded DP,
which means that we can turn x into x′ by substituting a single element with
another one. In all the included publications, we use the replace relation.

some forms of attack (Carlini et al., 2019). The reason for the given δ is that taking
δ = o( 1

n
) allows for releasing some records in the clear without any perturbation while

still satisfying Definition 1 via a probabilistic DP argument (see Dwork and Roth 2014;
Meiser 2018). This kind of approach to privacy, which provides good protection to most
data subjects at the cost of completely failing on a few cannot be considered acceptable.
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In general, depending on the setting, some specific relation can feel
more natural or turn out to be easier to analyse than others, but for now,
we simply treat the relation as an arbitrary choice that fixes the privacy
scale. When fixing the exact neighbourhood relation is not important, we
simply write x ∼ x′ for any neighbourhood relation.

2.1 Basic properties of differential privacy

DP has several nice properties that make it appealing as a privacy definition.
The most important basic ones are i) robustness against powerful adversaries,
ii) immunity to post-processing, and iii) group-privacy, which will be covered
in short order. Additional properties requiring lengthier treatment, namely,
privacy amplification by data subsampling, and composability, are treated
separately in Sections 2.4 and 2.5, respectively, after introducing more tools
needed for analysing DP in Section 2.2.

2.1.1 Robustness against powerful adversaries

Definition 1 does not explicitly mention any adversary, but is instead a
bound on the randomised algorithm M, which holds in the information
theoretic sense. As such, it provides guarantees including against a strong
computationally unbounded adversary, with access to the entire database
x except for a single element, who tries to make inferences about the final
element using arbitrary side information.2

In practice, however, implementing DP on finite computers with pseudo-
randomness, as well as combining DP with secure protocols (see Section 2.6)
requires, e.g., that the adversary is computationally bounded (Mironov
et al., 2009; Meiser, 2018).3

2It is sometimes claimed, that DP requires this so-called strong adversary assumption,
i.e., that the adversary has access to the entire database except for a single element (see
Tschantz et al. 2020 for a discussion on this point and for references). This is not
generally true. Instead, as shown by Tschantz et al. (2020), DP can be understood via
causal models without any hidden assumptions.

3Implementing DP algorithms that assume real numbers using standard floating-
point representation can also cause subtle vulnerabilities that can be exploited even by
computationally bounded adversaries: for example, simply taking a floating-point value
generated with a pseudo-random number generator from any standard mathematical
software, which is not specifically designed for DP, is likely vulnerable to an attack,
originally proposed by Mironov (2012), which utilises the imprecision caused by the
floating-point representation: in effect, generating values from, say, Gaussian or Laplace
distribution is based on first generating pseudo-random numbers from a standard uniform
distribution and then transforming these to have the required distribution. However, the
transformed values do not cover all the floating points in a uniform manner anymore, but
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In this thesis, we mostly use the unbounded adversary that is implicitly
covered by Definition 1. This is a common abstraction, but it should be
kept in mind that this hides important details that are crucial for actually
making DP practical (see e.g. Mironov et al. 2009; Haney et al. 2022;
Casacuberta et al. 2022).

Finally, while DP is a strong privacy notion, it does not guarantee
that an adversary will not learn anything about a given individual in the
protected database: in contrast, learning anything useful even on the aggregate
level requires leaking at least some information about the individuals making
up the population. DP is explicitly designed to leak information in a
controlled fashion so that learning is possible without necessarily causing a
catastrophic privacy breach (see e.g. Dinur and Nissim 2003; Dwork et al.
2006b; Dwork and Roth 2014).

2.1.2 Immunity to post-processing

Immunity to post-processing means that the output of a DP algorithm
cannot be made less DP without gaining access to the original data or to
the internal state of the DP algorithm. This is essential in practice, since
it enables releasing the results of DP algorithms without having to worry
about some clever attacker coming up with transformations that would
breach the privacy protection. Formally we have the following:

Theorem 3 (Post-processing immunity, Dwork and Roth 2014). Assume
a randomised algorithm M : X → O is (ε, δ)-DP. Let f : O → O′ be an
arbitrary (randomised) mapping. Then f ◦M is (ε, δ)-DP.

Proof. See Dwork and Roth (2014, Proposition 2.1).

2.1.3 Group-privacy

The privacy guaranteed by DP also readily extends to more than a single
element, i.e., the DP guarantees degrade gracefully when considering groups
instead of individuals.

Theorem 4 (Group privacy, Dwork and Roth 2014). Assume a randomised
algorithm M is (ε, δ)-DP. Then for a group of size k ≥ 1, M is (kε, δ ·
(
∑k−1

i=0 e iε))-DP.

there will be gaps in the possible values. An attacker might therefore be able to tell for
sure which one of the neighbouring data sets was the actual input simply by inspecting
the output.
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Proof. Write x(k) for a data set that differs from x on k elements, so x,x(1)

are neighbours in the sense of Definition 1. Let E ⊂ O be measurable.

P(M(x) ∈ E) ≤ eεP(M(x(1)) ∈ E) + δ

≤ e2εP(M(x(2)) ∈ E) + δ · (eε + 1)

...

≤ ekεP(M(x(k)) ∈ E) + δ · (
k−1∑

i=0

e iε).

2.2 Alternative differential privacy definitions

Definition 1 is not the only way to define DP: there are alternative definitions
which are equivalent to Definition 1 in the privacy sense, but provide a
different perspective that can be easier to analyse (see Zhu et al. 2022 for
more discussion on the recently introduced representations and on transforming
between them).

Another class of definitions consists of relaxations of the standard DP
definition. The aim of these relaxations is typically to make calculating the
total privacy parameters easier, especially under composition.

In this section, we present some important privacy definitions from both
classes. These are needed in Section 2.4 for privacy amplification by data
subsampling, and in Section 2.5 for composing DP algorithms.

The following Definition 5 characterises DP as a bound on the hockey-
stick divergence between probability distributions, a member of f -divergence
family of divergences (see e.g. Barthe and Olmedo 2013), and is equivalent
to Definition 1:

Definition 5 (DP via hockey-stick divergence, Barthe and Olmedo 2013).
A randomised algorithm M : X → O is (ε, δ(ε))-DP, iff

δ(ε) ≥ sup
x,x′∈X :x∼x′

Heε(M(x)∥M(x′)), (2.1)

where for α > 0 the Hockey-stick divergence is defined as

Hα(P∥Q) = Eo∼Q

[
max{0, p(o)

q(o)
− α}

]
. (2.2)

M is tightly (ε, δ(ε))-DP, if Equation 2.1 holds with equality.
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Another useful characterisation of DP is based on looking at the privacy
loss:

Definition 6 (Privacy loss, Dwork and Rothblum 2016; Bun and Steinke
2016). Let P,Q be two random variables defined on O, and define the
privacy loss function as

fp/q : O → R ∪ {−∞,∞}, fp/q(o) = log
p(o)

q(o)
.

The privacy loss random variable for P over Q, denoted as Lp/q, is distributed
as fp/q(P ).

To connect the privacy loss in Definition 6 with (ε, δ)-DP via Definition 2,
we have the following result:

Theorem 7 (Privacy loss and ADP, Balle and Wang 2018; Balle et al.
2018). Let M be (ε, δ)-DP algorithm. Then for every x,x′ ∈ X : x ∼ x′,
and writing P =M(x), Q =M(x′), the privacy profile of M satisfies

δM(ε) ≥ P(Lp/q ≥ ε)− eεP(Lq/p ≤ −ε).

Proof. See Balle and Wang (2018, Theorem 5).

The privacy loss formulation is most commonly used for (numerically)
composing DP algorithms (see Section 2.5).

Another important privacy definition that is based on looking at the
privacy loss, and which sits between pure DP and ADP, and is therefore
not equivalent to Definition 1, is called Rényi differential privacy (RDP):

Definition 8 (Rényi DP, Mironov 2017). A randomised algorithmM : X → O
is α-Rényi differentially private of order α, written (α, ε)-RDP, if for every
x,x′ ∈ X : x ∼ x′,

Dα(M(x)∥M(x′)) ≤ ε, (2.3)

where for α > 1, the Rényi divergence is defined as

Dα(P∥Q) =
1

α− 1
logEt∼Q

(
p(t)

q(t)

)α

, (2.4)

where p, q are densities corresponding to the distributions P,Q.

RDP essentially bounds specific moments of the privacy loss random
variable via the moment generating function. This becomes clear after a
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simple manipulation (see e.g. Steinke 2022): for distributions P,Q, the
RDP bound in Definition 8 can be equivalently written as

exp((1− α)ε) ≥Et∼Q

[
p(t)

q(t)

]α
(2.5)

=

∫ [
(p(t))α(q(t))1−α

]
dt (2.6)

=

∫
p(t)

[
p(t)

q(t)

]α−1

dt (2.7)

=Et∼P

[
p(t)

q(t)

]α−1

(2.8)

=Et∼P

{
exp

[
(α− 1) log

(
p(t)

q(t)

)]}
(2.9)

=E
{
exp

[
(α− 1)Lp/q

]}
. (2.10)

RDP is closely related to other privacy notions focusing on the moments
of the privacy loss, such as the variants of concentrated DP (CDP, Dwork
and Rothblum 2016; zero-concentrated DP or zCDP, Bun and Steinke 2016;
truncated concentrated DP or tCDP, Bun et al. 2018), which bound all or
several of the moments of the privacy loss at once.

Any RDP bound also directly implies ADP:

Theorem 9 (From RDP to ADP, Mironov 2017). Assume a randomised
algorithm M : X → O is (α, ε)-RDP. Then M is (ε+ log(1/δ)

α−1 , δ)-DP.

Proof. See Mironov (2017, Proposition 3).

While Theorem 9 shows that RDP implies ADP, the converse is not true
in general (see Zhu et al. 2022 for examples). What is more, the conversion
from RDP to ADP is necessarily lossy even in cases where RDP seems to
behave well. That is, while the simple conversion result given in Theorem 9
can be improved upon, RDP does not fully characterise ADP privacy profile,
since this would allow for lossless conversions from RDP to ADP and back
(Zhu et al. 2022, see also Balle et al. 2020a).

RDP enjoys many of the nice properties of DP (see Section 2.1), like
immunity to post-processing and a form of group-privacy (see e.g. Mironov
2017; Steinke 2022).

We generally use (ε, δ)-DP as the basic privacy definition in all the
included articles. However, we use RDP in Publication II to make the
privacy analysis with subsampling and composition more tractable (see
Sections 2.4 & 2.5 for privacy amplification by subsampling and composing
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DP algorithms, respectively), and then convert the final privacy parameters
to ADP via Theorem 9.

So far, all the DP definitions have been defined directly in terms of
some neighbouring data sets x,x′ ∈ X : x ∼ x′ by looking at the output
distributionsM(x),M(x′). For further analysis, especially when considering
subsampling and composition in ADP in Sections 2.4 & 2.5, it will often be
more convenient to work instead with dominating pairs of distributions:

Definition 10 (Dominating pairs, Zhu et al. 2022). A pair of distributions
(P,Q) is a dominating pair of distributions for a randomised algorithmM,
if for all α ≥ 0,

sup
x,x′∈X :x∼x′

Hα(M(x)||M(x′)) ≤ Hα(P ||Q).

If the equality holds for all α, then (P,Q) is tightly dominating.

The reason for introducing dominating pairs is that for some DP algorithms,
there does not exist a single pair of worst-case data sets x ∼ x′ that result
in tight privacy bounds (see Zhu et al. 2022 for an example, where the
worst-case pair depends on the privacy parameters).

Unlike worst-case pairs, tightly dominating pairs always exists for any
DP algorithm (Zhu et al., 2022, Proposition 8), although finding such a
pair for a given randomised algorithm might not be trivial. When a worst-
case pair exists, the distributions induced by the worst-case pair also form
a tightly dominating pair. Therefore, to establish tight privacy bounds
for a given algorithm, it is enough to find and analyse a single tightly
dominating pair. In Publication III, we show how to find dominating pairs
of distributions for some common DP algorithms in the shuffle DP setting
(see Section 2.6).

2.3 Standard DP mechanisms

Randomised algorithms satisfying DP are often called mechanisms. There
are several standard mechanisms for guaranteeing DP. In this section, we
will define the most common ones and state their respective privacy bounds.

We start with k-randomised response (kRR), which is often used as a
mechanism for guaranteeing pure DP when the data are categorical, such
as responses to some survey question:

Definition 11 (k-randomised response, Warner 1965). Let M : [k] →
[k], k ∈ {2, 3, . . . } be a randomised algorithm, such that for each xj , j =
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1, . . . , n,

P(M(xj) = i) =

{
1− (k−1

k )ζ if xj = i
ζ
k else,

(2.11)

where ζ ∈ (0, 1).

Essentially, for each sample xj ∈ {1, . . . , k} in the input data set x,
the kRR mechanism in Definition 11 simply outputs the input value with
probability 1− ζ, and a uniformly random value from the range {1, . . . , k}
otherwise. Theorem 12 states the resulting DP bounds when using kRR as
the privacy mechanism.

Theorem 12. Let M be a kRR algorithms as in Definition 11. Then M
is bounded ε-DP with

ε = log

(
k

ζ
− k + 1

)
.

Proof. Directly from the definition, w.l.o.g. assume that the neighbouring
data sets differ only on the first sample: x1 ̸= x′

1. For any outcome vector
s we have

P(M(x) = s)

P(M(x′) = s)
=

∏n
i=1 P(M(xi) = si)∏n
i=1 P(M(x′

i) = si)
(2.12)

=
P(M(x1) = s1)

P(M(x′
1) = s1)

(2.13)

≤1− (k−1
k ) · ζ
ζ
k

(2.14)

=e
log( k

ζ
−k+1)

, (2.15)

and the result follows directly from Definition 1.

In Publication III, we analyse the kRR mechanism in the federated
learning setting under shuffle DP (see Section 2.6), numerically establishing
privacy bounds that are tighter than the previously known analytic bounds.

For releasing continuous-valued data under DP, the most common mechanisms
are Laplace mechanism for pure DP and Gaussian mechanism for ADP. As
a preliminary, we first need to define function sensitivity, which is needed
for calibrating the noise level properly for a given function:

Definition 13 (Sensitivity, Dwork et al. 2006b). Let f : X → Rd be a
function. The ℓ1-sensitivity of f is given by

∆1(f) = sup
x,x′∈X :x∼x′

∥f(x)− f(x′)∥1, (2.16)
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and the ℓ2-sensitivity of f is given by

∆2(f) = sup
x,x′∈X :x∼x′

∥f(x)− f(x′)∥2. (2.17)

As noted above, the Laplace mechanism is one standard approach for
guaranteeing pure DP with continuous data:

Definition 14 (Laplace mechanism, Dwork et al. 2006b). Let f : X → Rd

be a function with ℓ1-sensitivity ∆1. Laplace mechanism is a randomised
algorithm M, such that

M(f,x, b) = f(x) + ξ, (2.18)

where ξk ∼ Laplace(0, b), k = 1, . . . , d, i.e., ξ is a d-dimensional random
variable s.t. each dimension independently follows a Laplace distribution
with mean zero and variance 2b2.

Considering the inputs to the Laplace mechanism in Definition 14, we
want the privacy guarantees to hold with fixed f and b. Theorem 15
quantifies the privacy guarantees due to using the Laplace mechanism for
releasing continuous function output values:

Theorem 15 (Pure DP with Laplace mechanism, Dwork et al. 2006b).
Let f : X → Rd be a function with ℓ1-sensitivity ∆1. Releasing the function
value through the corresponding Laplace mechanismM with noise parameter
b = ∆1

ε is ε-DP.

Proof. See e.g. Dwork and Roth (2014, Theorem 3.6).

The Gaussian mechanism, which adds spherical Gaussian noise to function
outputs scaled with the function sensitivity and the privacy parameters, is
the most common mechanism for providing ADP with continuous data:

Definition 16 (Gaussian mechanism, Dwork et al. 2006a). Let f : X → Rd

be a function with ℓ2-sensitivity ∆2. Gaussian mechanism is a randomised
algorithm M, such that

M(f,x, σ) = f(x) + ξ, (2.19)

where ξ ∼ N (0, σ2Id), and σ > 0.

As with the Laplace mechanism, we want DP guarantees to hold with
fixed f and σ, and therefore typically omit the arguments to the Gaussian
mechanism except for the data. Establishing the privacy guarantees using
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the Gaussian mechanism is more involved than with the Laplace mechanism.
The so-called classical Gaussian mechanism result, given in Theorem 17,
requires that ε ∈ (0, 1), and the resulting bounds can be loose even on that
interval:

Theorem 17 (Classical Gaussian mechanism DP bounds, Dwork and Roth
2014). Let f : X → Rd be a function with ℓ2-sensitivity ∆2. Releasing the
function value through the corresponding Gaussian mechanismM with noise
parameter σ2 ≥ 2 log( 5

4δ )
∆2

2
ε2

is (ε, δ)-DP for any ε ∈ (0, 1), δ ∈ (0, 1].

Proof. See Dwork and Roth (2014, Theorem A.1).

We use the classical Gaussian mechanism DP bounds (Theorem 17) in
Publication I.

Theorem 18 gives tight ADP bounds using the Gaussian mechanism.

Theorem 18 (Analytical Gaussian mechanism DP bounds, Balle and Wang
2018). Let f : X → Rd be a function with ℓ2-sensitivity ∆2. Releasing
the function value through the corresponding Gaussian mechanismM using
σ > 0 is (ε, δ)-DP for any ε ≥ 0, δ ∈ [0, 1] iff

δ(ε) ≥ Φ(
∆2

2σ
− εσ

∆2
)− eεΦ(−∆2

2σ
− εσ

∆2
), (2.20)

where Φ is the standard normal cdf.

Proof. See Balle and Wang (2018, Theorem 8).

The main advantage in the classical Gaussian mechanism bounds (Theorem 17)
compared to the tight bound (Theorem 18) is the easy analytical form,
which also allows for establishing asymptotical optimality results. However,
in the current research these kinds of optimality results have increasingly
been based on RDP (see Section 2.2) due to the ease of tighter composition
and to the known closed-form subsampling amplification results, as well as
to avoid the upper bound on ε.

Theorem 19 (Gaussian mechanism RDP bounds, Mironov 2017). Let f :
X → Rd be a function with ℓ2-sensitivity ∆2. Releasing the function value
through the corresponding Gaussian mechanismM using σ > 0 is (α, α∆

2
2

2σ2 )-
RDP.

Proof. See Mironov (2017, Proposition 7).
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One main workhorse in the current privacy-preserving machine learning
is DP stochastic gradient descent (DP-SGD, a basic version is given in
Algorithm 1), which uses the Gaussian mechanism (Definition 16) to guarantee
ADP in gradient-based optimisation. Besides being important for implementing
DP in practice, characterising the exact DP bounds for DP-SGD with
subsampling amplification has also been an important direction for the
development of privacy accounting more generally (see Section 2.5).

Algorithm 1 DP-SGD (Song et al., 2013)
Require: Differentiable loss function l(x; θ), step size α, initial values θ0,

maximum ℓ2-norm bound C, Gaussian mechanism noise level σ, total
number of optimisation steps T .

1: for t = 1 to T do
2: Choose a minibatch Bt.
3: for each sample xj in Bt do
4: Calculate gradient: gj ← ∇θl(xj ; θt−1).
5: Clip per-example gradient: g̃j ← min{1, C

∥gj∥2 } · gj .
6: end for
7: Aggregate and add Gaussian noise: gDP ←

∑
j g̃j + ξ, where

ξ ∼ N (0, C2σ2I).
8: Take an optimisation step: θt ← θt−1 − α · gDP

9: end for
10: return Optimised DP parameters θT .

We use DP-SGD in Publication IV as one alternative for enforcing DP in
partitioned VI (see Section 3.1.3): when the local optimisation runs in PVI
are done with DP-SGD, due to the post-processing guarantees (Theorem 3)
the trained model will have DP guarantees.

2.4 Privacy amplification by data subsampling

Privacy amplification refers to the general phenomenon where additional
randomisation in the learning results in better DP bounds. One of the most
important examples of privacy amplification is amplification by subsampling:
when a given DP algorithm is run on a randomly sampled minibatch of data,
the resulting DP bounds will improve depending on the sampling fraction.

Privacy amplification by subsampling has been considered under various
settings and privacy definitions (see e.g. Chaudhuri and Mishra 2006;
Kasiviswanathan et al. 2011; Beimel et al. 2014; Bassily et al. 2014; Abadi
et al. 2016; Balle et al. 2018; Zhu and Wang 2019)
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We will first define the sampling without replacement (WOR) subsampling
function that is used in the publications, which returns a constant size
minibatch:

Definition 20 (Sampling without replacement). A randomised function
WORγ is a sampling without replacement subsampling function, if it maps
a data set x of size n or n−1 to a uniformly random minibatch of size b < n.
The sampling fraction is defined to be γ = b

n .

Considering the amplification results, it turns out that a given subsampling
function is typically easier to analyse with specific neighbourhood definition
(see e.g. Balle et al. 2018; Zhu et al. 2022). Therefore, the privacy amplification
results for Poisson subsampling, which is the second common subsampling
function that returns varying-sized minibatches, are usually based on the
add/remove neighbourhood definition, while the results for WOR subsampling
results typically assume the replace neighbourhood.

The next theorems state amplification results for the WORγ subsampling.

Theorem 21 (Amplification by subsampling for dominating pairs, Zhu
et al. 2022). LetM be a randomised algorithm, and WORγ a subsampling
function as in Definition 20. If (P,Q) dominates M with replace relation
for data set of size γn, then for all neighbours x,x′ ∈ X n,

Hα

(
M◦WORγ(x)∥M ◦WORγ(x

′)
)
≤
{
Hα (γP + (1− γ)Q∥Q) for α ≥ 1,

Hα (P∥(1− γ)P + γQ) for 0 < α < 1.

Proof. See Zhu et al. (2022, Proposition 30).

We use Theorem 21 together with Algorithm 1 from Doroshenko et al.
(2022) for calculating subsampling amplification in Publication III in the
shuffle model of DP (see Section 2.6).

With RDP and WOR subsampling, we have the following privacy amplification
result:

Theorem 22 (WOR subsampling amplification for RDP, Wang et al. 2019).
LetM : X → O be a randomised algorithm, and let WORγ be a subsampling
function as in Definition 20. If M is (α, ε(α))-RDP with α ≥ 2, α ∈ N,
then the subsampled mechanism M◦WORγ is (α, ε′(α))-RDP with

ε′(α) ≤ 1

α− 1
log

(
1+γ2

(
α

2

)
min

{
4(eε(2)−1), eε(2)min{2, (eε(∞)−1)2}

}

+

α∑

j=3

γj
(
α

j

)
e (j−1)ε(j)min{2, (eε(∞) − 1)j}

)
. (2.21)
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Proof. See Wang et al. (2019, Theorem 10).

We utilise Theorem 22 in Publication II to enable better RDP bounds
when drawing samples with a DP Markov chain Monte Carlo method,
when each accept-reject decision is based only on a minibatch of data (see
Section 3.1.2).

2.5 Composing differentially private algorithms

The general idea in composition is that when sensitive data about a given
individual is used in several algorithms, the privacy guarantees should degrade
in a controlled manner. This is essentially what happens with DP, although
the details depend on the privacy definition and on the specific type of
composition.

Calculating the total privacy cost from repeated queries to DP algorithms
is called privacy accounting. Establishing more advanced privacy accounting
techniques that lead to improved or even tight DP bounds has been an
important research topic, which has seen significant progress during recent
years.

One fairly recent innovation in privacy accounting is the focus on numerical
accounting techniques (see e.g. Meiser and Mohammadi 2018; Koskela et al.
2020a; Mironov et al. 2019), which often leads to significantly tighter bounds
than analytical methods, even when the analytical methods can be shown
to have the correct asymptotic scaling. The tighter numerical bounds can
be invaluable for real-world deployment, where the constants are important.

We start by stating the main results for composing arbitrary (ε, δ)-DP
algorithms, as well as for the RDP composition. To improve on the general
bounds, we then move on to consider more specific DP algorithms, namely,
the (subsampled) Gaussian mechanism.

2.5.1 Composing general DP algorithms

We are interested in the adaptive sequential composition, where the later DP
mechanisms can depend on the output from the earlier algorithms. This
composition type is suitable, e.g., for running DP-SGD (see Algorithm 1),
where we have a fixed data set and fixed DP algorithms. In the following, we
refer to the adaptive sequential composition simply as adaptive composition.

There are other possible composition types, like the adaptive composition
for a fixed sequence of (ε, δ)-DP mechanisms defined via a composition
game (see Dwork et al. 2010b; Rogers et al. 2016), a generalisation of the
aforementioned to non-fixed sequences of DP algorithms (Rogers et al.,
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2016), or the adaptive concurrent composition (Vadhan and Wang, 2021),
but we do not consider them in this dissertation.

Definition 23 (Adaptive sequential composition). Let Mi : X → O, i =
1, . . . , k be DP algorithms. The adaptive sequential composition Mk ◦ · · · ◦
M1 : x 7→ (y1, . . . , yk) is the following sequence of algorithms: y1 =
M1(x), y2 = M2(x, z2), . . . , yk = Mk(x, zk), where the DP guarantees
always need to hold for the first argument, and zi is an auxiliary input,
such as the output from all the previous mechanisms.

The most elemental composition bound is the basic composition bound,
which states that the total epsilons and deltas add up, when running several
DP algorithms.

Theorem 24 (Basic composition, Dwork and Lei 2009; Dwork and Roth
2014). Assume a randomised algorithmMj is (εj , δj)-DP, with j = 1, . . . , k.
Then the sequence Mk ◦ · · · ◦ M1 is (ε′, δ′)-DP with ε′ =

∑k
i=1 εi, and

δ′ =
∑k

i=1 δi.

Proof. See Dwork and Roth (2014, Appendix B.1) for a proof.

For composing k arbitrary pure εi-DP mechanisms, i = 1, . . . , k, the
basic composition bound in Theorem 24 cannot be improved upon. However,
for ADP and other relaxations the case is more interesting. For example,
with ADP, by letting the total δ degrade somewhat, it is possible to improve
the resulting total ε significantly compared to ε′ in Theorem 24. Theorem 25
states the bound commonly known as the advanced composition.

Theorem 25 (Advanced composition, Dwork et al. 2010b). The adaptive
composition Mk ◦ · · · ◦ M1 with privacy parameters εi = ε, δi = δ, i =
1, . . . , k is (ε′, kδ + δ′)-DP under adaptive composition for any δ′ > 0, and
ε′ = ε

√
2k log(1/δ′) + kε(eε − 1).

Proof. See e.g. Dwork and Roth (2014, Theorem 3.20).

The result in Theorem 25 can also be extended to a varying sequence
of εi, δi, i = 1, . . . , k (Kairouz et al., 2015; Rogers et al., 2016). Next, we
state the optimal tight bound for the adaptive composition. This bound
was first shown by Kairouz et al. (2015) for the case of having the same
privacy parameters for all k algorithms, and later expanded to the case of
varying parameters by Murtagh and Vadhan (2016). Murtagh and Vadhan
also showed that the computational complexity of using their tight bound
for a sequence of varying parameters is #P -complete.4

4Complexity class #P is the class of counting problems associated with the decision
problems in NP.
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Figure 2.1: Comparison of basic (Theorem 24), advanced (Theorem 25),
and tight composition (Theorem 26) with εi = ε, δi = δ ∀i: in a) with only
5 compositions basic composition is superior to advanced composition for
much of the total δ range, while in b) with 100 compositions, advanced
composition results in clearly better ε even with only a small increase in
total δ. Comparing advanced and tight composition makes it clear that
the advanced composition always has some slack in the parameters. Note
that the bounds from the basic composition are tight if one is not willing
to increase total δ.

Theorem 26 (Tight composition, Kairouz et al. 2015; Murtagh and Vadhan
2016). The adaptive composition Mk ◦ · · · ◦ M1 with privacy parameters
εj = ε, δj = δ, j = 1, . . . , k is

(ε′i, 1− (1− δ)k(1− δ′i))-DP

for all i = 0, 1, . . . , ⌊k/2⌋, where ε′i = (k−2i)ε, and δ′i =
∑i−1

l=0 (
k
l)(e

(k−l)ε−e (k−2i+l)ε)

(1+eε)k
.

Proof. See Kairouz et al. (2015, Theorem 3.3), and Murtagh and Vadhan
(2016, Theorem 3.8).

Figure 2.1 shows a comparison of the bounds resulting from using Theorems 24,
25, & 26.

Next, we state the main composition results for composing ADP algorithms
via the dominating pairs formulation (see Definition 10:

Theorem 27 (Adaptive composition of dominating pairs, Zhu et al. 2022).
Assume the pair (Pi, Qi) dominates Mi,, i = 1, . . . , k. Then (P1 × · · · ×
Pk, Q1 × · · · × Qk) dominates the (adaptively) composed mechanism Mk ◦
· · · ◦M1.
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Proof. The result for two mechanism was shown by Zhu et al. (2022, Theorem
10), the results for k mechanisms follows immediately by induction.

In Publication III, we construct dominating pairs of distributions for
some common DP algorithms in the shuffle DP setting (see Section 2.6).
Due to Theorems 27 & 21, this enables tighter numerical privacy accounting
for compositions, including with subsampling, than the previously existing
methods.

Finally, as noted earlier, one main reason for considering RDP instead
of ADP is the ease of composing RDP mechanisms:

Theorem 28 (RDP composition, Mironov 2017). Let Mi be (α, εi)-RDP
algorithms, i = 1, . . . , k. Then the compositionMk ◦ · · · ◦M1 is (α,

∑
i εi)-

RDP.

Proof. The case for two mechanisms was shown by Mironov (2017, Proposition
1), the result for k mechanisms follows immediately by induction.

We use Theorem 28 in Publication II for privacy accounting in constructing
a DP Markov chain (see Section 3.1.2).

While the results in Theorems 28 & 27 hold generally, to improve on
the tight bound in Theorem 26, we need some concrete mechanisms that do
not match the worst-case covered by the more general results.

2.5.2 Composing specific DP algorithms: the Gaussian mechanism

As noted before, the composition result in Theorem 26 is tight for arbitrary
(ε, δ)-DP mechanisms. To improve on this bound, we need to make more
specific assumptions about the DP mechanisms.

In this section, we state some improved composition results for the
Gaussian mechanism (see Definition 16), which is one of the most commonly
used approaches to DP learning. Instead of looking only at single (ε, δ)-pairs
for each mechanism, we now change the perspective to consider the privacy
profiles {(ε, δ(ε))}, which allows for more fine-grained analysis.

As noted in Section 2.3, a single query answer released via the Gaussian
mechanism without privacy amplification is exactly characterised by Theorem 18
for ADP, as well as by Theorem 19 for RDP. For composing Gaussian
mechanisms without subsampling, tight bounds can also be easily stated.
The following Theorem 29 gives tight bounds in ADP:

Theorem 29 (Gaussian composition for ADP). LetMi be Gaussian mechanisms,
with ℓ2-sensitivity ∆i and variance σ2

i , i = 1, . . . , k. Then the adaptive
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composition Mk, ◦ · · · ◦M1 is (ε, δ)-DP for ε > 0, δ ∈ [0, 1] iff

δ(ε) ≥ Φ

[−ε+ µ√
2µ

]
− eεΦ

[−ε− µ√
2µ

]
,

where Φ is the standard normal cdf and µ =
∑k

i=1
∆2

i

2σ2
i
.

Proof. See e.g. Räisä et al. (2021, Theorem 2.4).

A bound for composing Gaussian mechanisms without subsampling is
also readily available with RDP.

Theorem 30 (Gaussian composition for RDP, Mironov 2017). LetMi, i =
1, . . . , k be Gaussian mechanisms, with the ith mechanism having ℓ2-sensitivity
∆i and variance σ2

i . Then the adaptive composition Mk, ◦ · · · ◦ M1 is
(α, α

∑
i
∆2

i

2σ2
i
)-RDP.

Proof. Follows directly from Theorems 19 & 28.

For the more complex case of subsampled Gaussian mechanism, privacy
bounds are usually established by numerical accounting, based typically on
ADP via the privacy loss formulation (essentially, it can be shown that the
composition amounts to convolving the privacy loss distribution, which is
the density or the probability mass function of the privacy loss random
variable in Definition 6, see e.g. Meiser and Mohammadi 2018; Koskela
et al. 2020a; Gopi et al. 2021; Doroshenko et al. 2022) or on RDP (Mironov
et al., 2019).

Numerical accounting usually allows for finding privacy parameters that
are tight up to a given numerical precision for the DP mechanisms in
question. For ADP, this results in practically tight guarantees, while for
RDP, the common practice of reporting the privacy in ADP means that the
results will still be lossy due to the lossy conversion (Zhu et al., 2022).

We use the numerical accounting approach of Koskela et al. (2020a,
2021) for quantifying the privacy bounds for the subsampled Gaussian
mechanism in Publication IV, and for kRR (Definition 11) in Publication
III in the shuffle mode of DP (Section 2.6).

2.6 From centralised to distributed DP

The DP definitions discussed in Sections 2 & 2.2 are based on the assumption
that the entire data set is available for a trusted data curator who can
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enforce DP. There are many settings where this is not true, but instead the
samples are distributed among several parties.

Common distributed data examples include user data on mobile devices
or data held, for example, by individual hospitals or health service providers.
There are several variations of DP definitions that suit such settings, with
differing assumptions on the level of trust, on the exact data partitioning,
and on the available secure primitives.

A useful baseline with the lowest-level of trust for distributed DP is given
by local DP (LDP, Kasiviswanathan et al. 2011), which essentially requires
that the distributed data sets can only be accessed via independent local
DP mechanisms:

Definition 31 (Local DP, Kasiviswanathan et al. 2011). Assume M parties,
where party j has a local data set xj and access to a DP algorithmMj. Mj

is a local randomiser, if it only accesses the local data xj at party j, and is
independent of any other parties. DP algorithms which only access the local
data sets via the local randomisers are said to guarantee LDP.

Unless mentioned otherwise, we assume that each individual is present
in only one of the local data sets in Definition 31. More complex cases can
be handled, e.g., by composition theorems (see Section 2.5).

The following result is immediate from the definition of LDP:

Corollary 32. Assume a distributed randomised algorithm M is LDP.
Assume that the local randomiser Mj guarantees (εj , δj)-DP for the full
protocol run. Then M is (ε′, δ′)-LDP, where ε′ = max{ε1, . . . , εM}, δ′ =
max{δ1, . . . , δM}.

Proof. This follows immediately by the so-called parallel composition, since
the local data sets are disjoint: for a given local randomiser Mj , the
workings of the distributed protocol M can be seen as presenting queries
toMj and post-processing them. Since for any j,Mj is (εj , δj)-LDP after
accounting for the full distributed protocol run, and εj ≤ ε′, δj ≤ δ′ ∀j,
it follows that M is (ε′, δ′)-LDP due to post-processing immunity (see
Theorem 3).

LDP is a very strong privacy notion that requires the absolute minimum
of trust: the only thing necessary is that each party can trust that their own
local randomiser satisfies DP. The downside is that the noise level needed
to guarantee DP is a lot higher compared to the centralised DP setting:

Example 33. Using the Laplace mechanism for releasing a sum query with
data xj ∈ [0, 1], j = 1, . . . ,M , the query answer will be

∑M
j=1 xj + ξ, where
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ξ ∼ Laplace(0, ∆ε ), so the variance in the centralised setting is σ2 = 2
ε2

since
the query sensitivity ∆ = 1. In contrast, with LDP and M parties the same
sum query can be answered by

∑M
j=1(xj + ξj), where ξj ∼ Laplace(0, ∆ε )∀j,

so the total noise variance will be
∑M

j=1
2
ε2

= Mσ2.

More generally, there are known separation results between the centralised
model and the local model used in LDP (see e.g. Kasiviswanathan et al.
2011). To improve on the basic LDP noise level, we need to limit the
amount of information the adversary will have, either by assumption or,
for example, by leveraging secure primitives. In the following, we generally
assume that the data are always horizontally partitioned, meaning that all
samples have the same features, regardless of who they belong to.5

Instead of general distributed learning, we are mostly interested in the
federated learning (FL) setting introduced by McMahan et al. (2017): we
assume there are M parties, often called clients, with client j holding nj

samples, and that all the clients are connected to a central server, which
controls the learning protocols. The aim is to learn a single joint model
from all clients’ data while keeping the actual data distributed.6

Depending on the number and capabilities of the clients, it is common to
distinguish between cross-device and cross-silo cases (Kairouz et al. 2021b).
In the cross-device case there can be millions of clients, each with a (very)
limited amount of data corresponding to a single individual, and the clients
can drop out in the middle of the learning protocol. In contrast, in the
cross-silo case the number of clients tends to be moderate at most, the
clients are more persistent, and each client usually has some amount of
samples. Additionally, the data held by a single client usually comes from
several individuals.

Considering the granularity of the DP protection, besides the standard
individual-level neighbourhood granularity, other proposed neighbourhoods
include sample-level neighbourhood (also called example-level, item-level or
event-level, see e.g. Heikkilä et al. 2020; Wei et al. 2020; Liu et al. 2022),
element-level (which can interpolate between sample-level and user-level
depending on the chosen parameters, see Asi et al. 2019), user-level (Dwork
et al., 2010a; McMahan et al., 2018; Andrew et al., 2021), and client-level
(Geyer et al., 2017; Truex et al., 2019, 2020; Kim et al., 2021).

5This is in contrast to vertical partitioning, where different features of data on a given
individual are held by different parties (Mohammed et al., 2014; Tajeddine et al., 2020).

6We note that there has been plenty of research done on distributed DP before the
introduction of federated learning. Distributed DP in a collaborative multiparty setting
was first proposed by Dwork et al. (2006a). Goryczka and Xiong (2017) give a nice
overview of the most relevant earlier literature on distributed DP.
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Changing the granularity does not change the basic DP definition (as
in Definition 1). However, explicitly changing the neighbourhood helps
to avoid confusion about the DP protection granularity. It also allows us
to consider different levels of DP protection at the same time: a DP FL
protocol might, for example, satisfy sample-level, element-level, user-level,
and client-level DP all at the same time with differing privacy parameters.

While we can often choose the granularity as we wish, it is generally
better to try and push the randomisation to the lowest possible level in the
protocol, since this guarantees having at least some noise in the results even
if an adversary gains access to higher level information.

In DP FL, we often need to be more explicit about the view of the
assumed adversary than in the centralised setting, especially with respect
to privacy amplification results:

Example 34. Assume the clients communicate with the server in a FL
protocol using secure channels. If we do subsampling on the client level and
only the chosen clients communicate with the server, then an adversary who
can simply observe who communicates has no additional uncertainty from
the subsampling, even if the encryption scheme is information theoretically
secure.

Instead of simply defining a single adversary, a more solid approach
would be to consider various adversaries with differing capabilities at the
same time. Ideally, we would want to have a layered view of the DP
guarantees, where the guarantees erode in a controlled manner when we
allow the adversary more and more detailed view to the protocol; starting
from a complete outsider adversary, who can only observe the final output
of the protocol, and ending with a fully powerful adversary, who can, e.g.,
choose the data except for a single element on each iteration, and can
directly observe the outputs from any DP randomisers in the protocol.

Unfortunately, a full layered security and privacy analysis is typically
very hard to do in practice. The current practice therefore is to simply
consider a single adversary.

The layered view to DP protocols is tightly related to the ideas of
empirical DP guarantees, membership inference attack and adversary instantiation
(Erlingsson et al., 2019b; Nasr et al., 2021; Watson et al., 2022). The
aim in adversary instantiation is to establish empirical bounds for the
privacy protection by instantiating various adversaries and measuring how
successful actual membership inference attacks are.

Compared to the worst-case upper bounds derived from DP theory,
these attacks provide a corresponding lower bound. When the bounds
meet, we know that the theoretical privacy analysis cannot be improved
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without limiting the adversary further. In case the attack can be shown to
be optimal, the empirical bounds could also be directly used as a privacy
protection measure.

2.6.1 DP with secure aggregation

As mentioned before, to improve on the LDP guarantees, we need to limit
the amount of information the adversary has. A common approach for
achieving this is to rely on suitable secure primitives (see e.g. Lindell and
Pinkas 2009). The basic idea with secure primitives is to calculate a given
function while guaranteeing that the adversary only learns the final result.
Compared to DP, this is an orthogonal direction that can be beneficial for
DP guarantees: secure primitives guarantee that the adversary only learns
the final result, while DP guarantees that the final result does not leak too
much sensitive information.

Since general multiparty computation (MPC) can be used to compute
basically any distributed functionality (Yao, 1982; Lindell and Pinkas, 2009),
in principle we can simply use a general MPC protocol to implement any DP
algorithmM in a given distributed setting, including in FL. The bottleneck
is the scalability: for many tasks, the general approach is not efficient
enough to be practical.7 Depending on the problem, however, there might
be more efficient protocols available.

Assume that answering sum queries of the form
∑M

j=1 fj(xj) for some
functions fj , where xj is the local data for client j, are sufficient for learning
(see e.g. Blum et al. 2005 for a discussion on the power of the sum query
framework). Then we can use secure aggregation to guarantee that the
adversary can only observe the final sum.

An additively homomorphic encryption (AHE) protocol (see e.g. Lindell
and Pinkas 2009) is defined with some discrete ring as the message space,
typically taken to be the group of integers with modulo m addition, denoted
by Zm, and two efficient algorithms:

1. +pk, which takes as input a public key and two ciphertexts Epk(m1), Epk(m2) ∈
Zm, and outputs Epk(m1) +pk Epk(m2) = Epk(m1 +m2).

2. ·pk, which takes as input the public key, a ciphertext Epk(m), and a
constant c ∈ Zm, and outputs c ·pk Epk(m) = Epk(c ·m).

7However, Jayaraman et al. (2018) show that, for example, learning a fairly large DP
linear regression model, where also the randomness for DP is generated in a distributed
manner using an MPC protocol, can be done efficiently enough. The general idea of DP
via distributed noise generation was originally proposed by Dwork et al. (2006a).
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Using a suitable AHE (e.g. Paillier 1999), the clients can guarantee that
the server can only decrypt the final result

∑M
j=1Epk(fj(xj)), fj(xj) ∈ Zm

for all j.
A similar construction can be done using additive secret sharing (Shamir,

1979; Boneh and Shoup, 2023). A t-out-of-N secret sharing scheme over Zm

is a pair of efficient algorithms:

1. A probabilistic sharing algorithm G, which takes as input parameters
N, t and a secret m ∈ Zm, and outputs shares (ζ1, . . . , ζN ), a t-out-of-
N sharing of m.

2. A deterministic combining algorithm C, which takes as input a subset
of the shares {ζi}i∈I , I ⊂ {1, . . . , N}, |I| = t, and outputs the reconstructed
secret m.

The main idea in a t-out-of-N secret sharing scheme is that the secret
m can be perfectly reconstructed with any combination of t shares, while
any combination of less than t shares reveals no information about m.

In Publication I, we introduce a simple N -out-of-N additive secret sharing
variant for a setting where there are several independent servers available:
each server receives a share of a secret from each client, and the total sum
can be reconstructed only by combining all the shares. Concurrently with
Publication I, Corrigan-Gibbs and Boneh (2017) published essentially the
same encryption scheme (besides the encryption, Corrigan-Gibbs and Boneh
2017 also introduced novel zero-knowledge proofs).

To combine AHE or additive secret sharing with DP, one often used
idea is that each client adds a small amount of noise from some infinitely
divisible family of distributions (such as the Gaussian family) and when
the contributions from all the clients are summed, the aggregated noise will
have the required variance for the chosen DP guarantees.

With AHE, assuming all honest clients for simplicity and writing ξ for
the noise that is sufficient to guarantee DP for the full sum query, each
client j adds noise ξj to their own query and encrypts it:

M∑

j=1

Epk(fj(xj) + ξj) = Epk(
M∑

j=1

fj(xj) + ξ), (2.22)

where ξ =
∑M

j=1 ξj . Decrypting the final sum, the server is left with the
required DP sum, which in this case has exactly the same amount of noise
as required in the centralised setting. Unlike in the LDP setting, the DP
guarantees now depend on all the clients, since each noise shard is required
for the correct variance.
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This basic idea of combining secure summation and DP was first introduced
by Rastogi and Nath (2010), and has been subsequently reinvented or
borrowed in several papers (e.g. Heikkilä et al. 2020; Wei et al. 2020, see
Goryczka and Xiong 2017 for a survey of related techniques in a more general
distributed DP setting), including in Publications I and IV.

While this approach works with an ideal trusted aggregator summing
true reals, as pointed out, for example, by Kairouz et al. (2021a), implementing
it on finite computers runs into problems with continuous noise values: the
distribution of the noise ξ after summation is not generally guaranteed to be
in the same noise family anymore (see also related discussion in Section 2.1
on vulnerabilities caused by standard floating-point representation).

Several discrete noise distributions which do not suffer from this vulnerability
have been proposed, which have been increasingly close to the continuous
Gaussian in terms of utility (Agarwal et al., 2018; Canonne et al., 2020;
Kairouz et al., 2021a; Agarwal et al., 2021; Chen et al., 2022; Chaudhuri
et al., 2022).

Another potential problem with the above scheme of using AHE or secret
sharing for DP learning is potential vulnerability to attacks such as model
poisoning or backdooring with more malicious clients: since the server can
only observe the final noisy sum, malicious clients can try to do model
poisoning or create backdoors without being detected.8

While there are methods which try to make the models provably more
robust against such attacks (for example, certified robustness, introduced
by Lécuyer et al. 2019, leverages DP to formally guarantee that small
perturbations do not change the model’s predictions) or which can guarantee
that the input has the expected form (see e.g. Corrigan-Gibbs and Boneh
2017; Sabater et al. 2022 that use scalable zero-knowledge proofs), they
also induce additional costs, either in terms of decreased model utility or in
increased computational and communications requirements.

2.6.2 Shuffle model of DP

Another secure primitive useful for DP FL is secure shuffling (Chaum, 1981).
A secure shuffler takes one or more messages from each client as input, and
after receiving all messages, outputs a uniformly random permutation of
the inputs. This basic functionality is the basis for shuffle DP, which was
first formalised by Cheu et al. (2019) (see also Bittau et al. 2017).

Assuming M clients in total, denote the local randomiser used by client
j by Rj : X → Onmsg , where nmsg is the number of messages the client will

8See Lin et al. 2021 for a survey of proposed attacks against machine learning models.
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send to the shuffler. We usually assume that Rj = R ∀j. The shuffler is a
randomised mapping

S : OM×nmsg → OM×nmsg ,S(x1, . . . ,xMnmsg) = (xπ(1), . . . ,xπ(Mnmsg)),

where π is a uniformly random permutation.
For privacy, we require that S(∪Mj=1R(xj)) is DP. As with secure aggregation

and in contrast to LDP, in shuffle DP the privacy guarantees are again
joint guarantees on all the clients, since they depend jointly on the local
randomisers in addition to the shuffler.

Comparing shuffle DP with LDP and centralised DP, since shuffle DP
gives out more information than centralised DP but has an additional layer
of uncertainty compared to LDP, we would intuitively expect that it will sit
between LDP and centralised DP in capability. This basic intuition turns
out to be right, as established by separation results for the single-message
(nmsg = 1) model (Cheu et al., 2019).

There are also known separation results in the shuffle model between
single-message and multi-message (nmsg > 1) models (see e.g. Balle et al.
2019; Cheu 2021; Ghazi et al. 2021a, 2020, 2021b). Various versions of
interactive shuffle model have also been considered, which can further strengthen
the model. A fully interactive multi-message shuffle DP has been shown to
be powerful enough under some assumptions to simulate any randomised
algorithm defined in the centralised DP model (see Cheu 2021 for a good
discussion on known separation results and various forms of interactivity in
shuffle DP).

Another perspective to the shuffle DP model is via privacy amplification:
under some assumptions, the privacy of a given LDP protocol can be amplified
by adding a shuffler (Erlingsson et al., 2019a; Balle et al., 2019, 2020b;
Feldman et al., 2021, 2022; Girgis et al., 2021b,a). In effect, finding the
optimal privacy amplification means deriving tight DP bounds in the shuffle
DP model (compare this to the discussion on privacy amplification by
subsampling in Section 2.4).

In Publication III, we construct dominating pairs of distributions (see
Definition 10) for various local randomisers in the shuffle DP model. We
derive such pairs for general pure LDP randomisers based on the results of
Feldman et al. (2021), as well as for k-randomised response (see Definition 11)
under varying adversaries, expanding on the work of Balle et al. (2019). The
dominating pairs can then be directly used with any numerical accounting
method (see Section 2.5), to find tighter privacy bounds than was possible
with the previously existing methods for adaptive sequential compositions
in the shuffle DP model.
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Chapter 3

Privacy-preserving Bayesian learning

In this section, we first review the basics of Bayesian learning, starting with
the high-level objective of learning a posterior distribution in Section 3.1.
In Section 3.1.1, we discuss exact Bayesian learning and exponential family
distributions, and then continue with approximate Bayesian learning based
on Markov chains in Section 3.1.2, and on variational inference in Section 3.1.3.
Finally, in Section 3.2 we discuss the main approaches to DP Bayesian
learning.

3.1 Bayesian learning

In Bayesian learning we are generally interested in learning a posterior
distribution on some quantity of interest θ ∈ Θ, given some data x ∈ X ,
a prior distribution p(θ), and a likelihood p(x|θ).1 By Bayes’ theorem the
posterior distribution can be written as

p(θ|x) = p(x|θ)p(θ)
p(x)

(3.1)

∝ p(x|θ)p(θ), (3.2)

where p(x) is the normalizing constant, often also called the partition
function, the marginal likelihood, or the evidence of the model. It is
important, for example, in model selection problems (see, e.g., MacKay
2003).

The posterior distribution p(θ|x) describes our beliefs about θ in light
of the prior and the data, and can be used for making predictions for future

1See e.g. Bernardo and Smith (1994) for a nice general overview of Bayesian theory.
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observations x̂ via the predictive distribution

p(x̂|x) =
∫

θ
p(x̂|θ)p(θ|x)dθ. (3.3)

By privacy-preserving Bayesian learning, we essentially mean learning
the posterior p(θ|x) under DP.

3.1.1 Conjugate-exponential family of distributions

The Bayesian learning approach as described so far is very straightforward:
when seeing some new data, we update our beliefs via Equation (3.1), and
make predictions via Equation (3.3) when necessary.

The main difficulty is typically computational: the posterior is usually
an intractable distribution that is hard to work with. However, for an
important if restricted class of problems, namely, for conjugate-exponential
family models, the posterior has a closed-form expression and is therefore
generally a tractable distribution.

Exponential family distributions have several nice properties (see, for
example, Casella and Berger 2001; Bernardo and Smith 1994), the most
important for our purposes being that they have conjugate priors, which
allows for solving the posterior analytically, and that they always have finite
sufficient statistics.

Before discussing the exponential family further, we first define a sufficient
statistic:

Definition 35 (Sufficient statistic, Jordan 2009). A function T : X → Rd

is called a sufficient statistic for x, if

p(θ|T (x)) = p(θ|T (x),x). (3.4)

Additionally, when T (x), T ′(x) are sufficient statistics, if there always exists
a function f s.t. T (x) = f(T ′(x)), then T (x) is called a minimal sufficient
statistic.

The main point in Definition 35 is that a sufficient statistic contains all
the information from the data that is needed for fitting a model. 2

It turns out that the family of models which have finite sufficient statistics
with any data set size is the exponential family:

2Note that there are other equivalent definitions of sufficiency, see e.g. Bernardo and
Smith (1994); Casella and Berger (2001); Wasserman (2004). Our chosen definition is
one of the more Bayesian-friendly approaches, since we tend to think of the parameter θ
as random in any case.
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Definition 36 (Exponential family). A probability distribution belongs to
an exponential family, if it can be written as

p(x|θ) = h(x) exp
(
η(θ)TT (x)−A(η(θ))

)
, (3.5)

where θ ∈ Θ ⊆ Rd, h : X → R, T (x) is a sufficient statistic, and A(η(θ)) is
called the cumulant function or the log-partition function.

If ηi(θ) = ηi∀i in Definition 36, then the family is said to be in canonical
form, and the parameters are called natural parameters. A given exponential
family can always be transformed into canonical form by a suitable transformation
(see, e.g., Casella and Berger 2001).

In addition, the parameterisation is said to be minimal, when there are
no linear constraints between the components of the parameter vector nor
(almost surely) between the components of the sufficient statistic. The space
H = {η :

∫
h(x) exp

(
η(θ)TT (x)

)
dx < ∞} is called the natural parameter

space. When H is a non-empty open set, the exponential family is called
regular. In this thesis, we focus on regular exponential families.

Finally, exponential family distributions have conjugate priors, that
allow for writing the posterior in a closed-form:

Definition 37 (Conjugacy). Let p(θ|λ0) be an exponential family prior,
and p(x|θ) a likelihood function. If the posterior p(θ|x, λ0) ∝ p(x|θ)p(θ|λ0)
is in the same exponential family as the prior, then the likelihood and the
prior are conjugate distributions.

Example 38 (Conjugate-exponential family). Let X ∼ Bin(n, θ), where
θ ∈ (0, 1) is the interesting parameter. We immediately have

p(x|θ) =
(
n

x

)
θx(1− θ)n−x (3.6)

=

(
n

x

)(
θ

1− θ

)x

(1− θ)n (3.7)

=

(
n

x

)
exp

{
log

(
θ

1− θ

)
· x+ n log(1− θ)

}
. (3.8)

Substituting η = log
(

θ
1−θ

)
above gives

p(x|η) =
(
n

x

)
exp {η · x− n log(1 + exp(η))} , (3.9)

which is clearly an exponential family distribution with sufficient statistic
T (x) = x, natural parameter η(θ) = log

(
θ

1−θ

)
, and log-partition function

A(η) = n log(1 + exp(η)).
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Considering now setting a prior on θ s.t. the prior and the Binomial
likelihood are conjugate, Beta distribution has the correct functional form
with density

p(θ|α, β) = Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, (3.10)

where α, β are prior parameters, and Γ is the gamma-function. The posterior
can now be solved analytically:

p(θ|x, α, β) ∝ p(x|θ)p(θ|α, β) (3.11)

∝ θα+x−1(1− θ)β+n−x−1, (3.12)

which is another Beta distribution with parameters α′, β′ given by

α′ = α+ x, β′ = β + n− x. (3.13)

We need the exponential family theory in Publications I and IV: a finite
sufficient statistic allows for an efficient approach to enforcing privacy, based
on perturbing the sufficient statistic (see Section 3.2 for a longer discussion
on sufficient statistic perturbation). Additionally, in Publication IV we show
that in the conjugate-exponential family, our local averaging approach to
partitioned variational inference (see Section 3.1.3) does not change the
resulting local approximation.

While the conjugate-exponential family contains many important and
practically relevant distributions, in most cases the posterior distribution
does not have a nice analytical form. We can still work with such distributions,
e.g., by using computational methods to approximate the true posterior. We
will next focus on the two most common approximation methods: Markov
chain Monte Carlo (MCMC, Section 3.1.2) and variational inference (VI,
Section 3.1.3).

3.1.2 Markov chain Monte Carlo

The main idea in MCMC is to draw samples from a distribution that is
not tractable. In our case, we want to approximate an intractable posterior
by drawing samples. These samples can then be used to estimate various
quantities of interest, such as the mean or the variance of the true posterior.

We first discuss some basic properties of Markov chains and then move
on to introduce the main variants of MCMC used in the dissertation. We
refer to Robert and Casella (2004); Meyn and Tweedie (2005) for good
general presentations of Markov chain and MCMC theory.
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Markov chains

A Markov chain is a random process evolving in (discrete) time. The process
is controlled by a transition kernel. We take the transition kernel K to
be a conditional probability distribution on the state space Θ, giving the
probabilities for the next state given the current one.

The defining property of Markov chains is their limited memory: the
next state only depends on the most recent value, and knowing the full
history beyond this point brings no additional benefit. In this thesis, we
only need time-homogeneous chains, for which the transition probabilities
do not change over time:

P(Zt+m ∈ A|z1, . . . , zt) = P(Zt+m ∈ A|zt) = Km(zt, A) ∀t,m > 0, (3.14)

where we write Km(zt, A) for the probability that the chain moves from zt
to A in m steps, and writing B for the Borel σ-algebra, we have A ∈ B(Θ),
and zi ∈ Θ ∀i.

To guarantee that a Markov chain will eventually converge to our chosen
target distribution, two properties are sufficient: detailed balance and ergodicity.
Detailed balance guarantees that the chain has a (correct) stationary distribution,
and ergodicity essentially means that the initial state does not matter for
the convergence.

For ergodicity, the Markov kernels considered in this thesis have the
strong irreducibility property: any positive measure set A ∈ B(Θ) can be
reached from any other point in the parameter space in a single step.

As mentioned, the second condition we need is detailed balance:

Definition 39 (Detailed balance). A Markov chain with transition kernel
K satisfies the detailed balance condition, if

K(y, z)π(y) = K(z, y)π(z), y, z ∈ Θ

where π is a probability density.

For a chain satisfying detailed balance condition (Definition 39), it
can be shown that the distribution π is the invariant distribution of the
chain, and the chain is time-reversible (see e.g. Robert and Casella 2004).
Detailed balance together with strong irreducibility are sufficient conditions
to guarantee that the chain convergences asymptotically to the invariant
distribution π.
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MCMC algorithms

As discussed earlier, the basic idea in MCMC is to construct a Markov
chain to approximate an intractable distribution π.3 Algorithm 2 describes
a standard approach, where we construct a Markov chain by proposing
the next value for the chain by a transition kernel K, and then decide if
the chain moves with an acceptance test ϱ. With some assumptions, the
chain can then be shown to converge asymptotically to the chosen target
distribution π (see, e.g., Robert and Casella 2004).

Algorithm 2 General MCMC
Require: Target distribution π, Markov kernel K, acceptance test ϱ,

number of samples T , initial value θ0.
1: for t = 1 to T do
2: Propose new value θ′ from the proposal distribution K(θt−1, ·).
3: Set θt = θ′ with probability ϱ(θt−1, θ

′), otherwise set θt = θt−1.
4: end for
5: return Generated samples θ1, . . . , θT .

While there are many options for the kernel K when using Algorithm 2,
a common choice is K(θ, ·) ∼ N (θ, σId) with some σ > 0. When θ ∈ Rd,
this guarantees that the chain is strongly irreducible, since any state can be
reached from any other state in a single step.

In turn, the most common choice for the acceptance test ϱ is the Metropolis-
Hastings (M-H) test:

Definition 40 (Metropolis-Hastings acceptance test, Metropolis et al. 1953;
Hastings 1970). Given a target distribution π and a Markov kernel K, the
Metropolis-Hastings acceptance test is given by

ϱMH(θ, θ′) = min

{
1,

π(θ′)K(θ′, θ)
π(θ)K(θ, θ′)

}
, (3.15)

where θ is the current state and θ′ is the proposed new state for the chain.

Note that the target distribution π, is only needed up to the normalising
constant to calculate the acceptance probability ϱMH in Definition 40.

While M-H is the most common acceptance test used in practice, there
are other possible choices which lead to valid MCMC samplers. These are
less used in standard settings, since the M-H acceptance test can be shown

3As also noted earlier, in the Bayesian case this would typically be the posterior:
π(θ) ∝ p(x|θ)p(θ).
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to be the most efficient choice (Peskun, 1973). One alternative choice is the
Barker acceptance test:

Definition 41 (Barker acceptance, Barker 1965). Given a target distribution
π and a Markov kernel K, the Barker acceptance test is given by

ϱBarker(θ, θ
′) =

π(θ′)K(θ′, θ)
π(θ)K(θ, θ′) + π(θ′)K(θ′, θ)

, (3.16)

where θ is the current state and θ′ is the proposed new state for the chain.

In Publication II we use the Barker acceptance test to construct a general
differentially private MCMC method. In our setting, the main advantage
in using the Barker acceptance is that it has an equivalent representation
via Logistic noise. Write Vlog for a random variable with a standard logistic
distribution, i.e., a random variable Vlog has the probability density function

pVlog
(y) =

exp(−y)
(1 + exp(−y))2

, y ∈ R. (3.17)

Seita et al. (2017) have shown that testing if

log
π(θ′)K(θ′, θ)
π(θ)K(θ, θ′)

+ Vlog > 0

is equivalent to the acceptance test ϱBarker in Definition 41. We show how
this Logistic noise representation can be used for guaranteeing RDP for the
chain without any additional perturbation mechanism. This is in contrast
to most standard approaches to differential privacy, which are based on
adding extra randomisation steps to learning algorithms (see Section 2.3).

3.1.3 Variational inference

In variational inference, the basic idea is to find a tractable approximating
distribution to an intractable posterior by turning the original problem into
an optimisation problem than can be solved (see e.g. Jordan et al. 1999;
Bishop 2006 for an introduction to VI, Zhang et al. 2019 for a more recent
survey).

Writing q(θ) for the approximation, we try to minimise some notion of
distance between the approximation and the true posterior. Most-commonly,
the distance is measured in terms of Kullback-Leibler (KL) divergence,
which leads to the following optimisation problem:4

argmin
q∈Q

[
DKL(q(θ)∥p(θ|x))

]
, (3.18)

4Note that KL divergence is not symmetric, and hence is not a proper metric.
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whereQ is some tractable family of distributions, and DKL(Q∥P ) = Eo∼Q

[
log( q(o)p(o))

]
.

The minimisation problem in Equation 3.18 is still not generally tractable.
However, we can reformulate Equation 3.18 as a maximisation problem:

−DKL(q(θ)∥p(θ|x)) =
∫

q(θ) log

(
p(θ)p(x|θ)
q(θ)p(x)

)
dθ (3.19)

= Eq[log p(x|θ)]−
∫

q(θ)

[
log

q(θ)

p(θ)

]
dθ − Eq [log p(x)]

(3.20)

= Eq[log p(x|θ)]−DKL(q(θ)∥p(θ))− log p(x). (3.21)

Since p(x) in Equation 3.21 does not depend on θ, it does not change
the optimal approximation q. Therefore, solving the following optimisation
problem is equivalent to the original problem in Equation 3.18:

argmax
q∈Q

[
Eq[log p(x|θ)]−DKL(q(θ)∥p(θ))

]
. (3.22)

The utility function inside the argmax in Equation 3.22 is called the evidence
lower bound (ELBO).

Ashman et al. (2022) consider VI in the federated learning setting, where
the model is learned by a central server and the data are distributed among
M clients (see Section 2.6 for more discussion on the federated learning
setting), and propose a general partitioned VI (PVI) framework.

The main aim in PVI is to reduce the amount of communication rounds
between the server and the clients by pushing more computations to the
clients, while maintaining the same global VI solutions. This is enabled by
constructing the approximation using client-specific factors, and by modifying
the ELBO. The PVI approximation is defined as:

q(θ) =
1

Zq
p(θ)

M∏

j=1

tj(θ) ≃
1

Z
p(θ)

M∏

j=1

p(xj |θ) = p(θ|x), (3.23)

where Zq, Z are normalising constants. The PVI algorithm works by iteratively
updating the t-factors via purely local optimisations, and updating the
global approximation by the server incorporating the local changes.

For client m doing local optimisation at global update s, the local ELBO
in PVI is defined as

Eq[log p(xm|θ)]−DKL(q(θ)∥p(s)\m(θ)), (3.24)
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where xm is the local data at client m, and p
(s)
\m(θ) is the effective prior or

the cavity distribution:

p
(s)
\m(θ) = p(θ)

∏

j ̸=m

t
(s−1)
j (θ).

Compared to the regular ELBO in Equation 3.22, the local ELBO only
uses the mth data shard, and replaces the prior with the effective prior p(s)\m,
which includes t-factors from the other clients.

The main idea with the client-specific t-factors is that during local
optimisation at client m, the factors tj , j ̸= m effectively stand in for the
log-likelihood terms p(xj |θ). This allows for running the local optimisation
without communicating with the other clients, while still having information
about the missing log-likelihood terms to prevent the local optimisation
from only finding a locally optimal solution.

In Publication IV, we propose a framework for DP federated VI based
on PVI. We consider three possible implementations within the general
framework, one based on perturbing the local optimisation runs (effectively,
using DP-SGD for the local optimisations, see Algorithm 1) and two alternatives
based on perturbing the global model updates sent by the clients with the
Gaussian mechanism (Definitions 16).

3.2 DP Bayesian learning

Intuitively, there are good reasons why combining Bayesian approaches with
DP might make sense. One of the main attractions in Bayesian learning
generally is the principled handling of uncertainty: the main interest is the
posterior, which is a distribution, not a single parameter value. Since DP is
all about introducing carefully tuned uncertainty into the learning process,
one could hope that this additional source of noise can be handled with
little effort using the same Bayesian principles.

Unfortunately, this turns out to be a hard problem in general. On
the positive side, there is already a rich literature on combining Bayesian
learning with DP under various settings. The existing approaches are
applicable in differing settings, and there exists no universally best method;
all DP Bayesian learning methods incur some costs, most typically in terms
of model utility, but in many cases also in terms of the amount of compute
required, and the most suitable method depends on the setting in question.

In the rest of this section, we review the existing literature focusing on
the approaches that are most significant in contextualising the publications
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included in this dissertation. The main approaches covered in the next
sections, as well as the models where each is applicable, are listed in Table 3.1.

Possible models Output
Exact posterior

sampling
Models where

direct sampling
is possible

Samples

Sufficient statistic
perturbation

Exponential
family only

Model
parameters

MCMC Any model Samples
VI Exponential

family or
differentiable

approximating
models

Model
parameters

Table 3.1: Main approaches to DP Bayesian learning

3.2.1 DP via posterior sampling

Considering how one can share an arbitrary posterior distribution, one
general way to summarise any distribution is to provide samples from it.
Assuming for the moment that we can simply draw samples from the exact
posterior distribution, Dimitrakakis et al. (2014, 2017) showed that, under
some conditions, the uncertainty from the random posterior sampling without
any additional noise mechanism can provide pure DP (Definition 1).

This privacy via posterior sampling was observed to be an instance of
exponential mechanism (McSherry and Talwar, 2007), a standard privacy
mechanism, already by Mir (2012) in connecting DP with information theory.
The connection with the exponential mechanism was also used by Wang
et al. (2015) (see also Dimitrakakis et al. 2017), who showed that a sample
from the posterior with DP guarantees generally enjoys some nice statistical
properties, such as consistency under fairly weak assumptions (see also
Zhang et al. 2016).

Minami et al. (2016) introduced (ε, δ)-DP exponential mechanism for
providing ADP assuming convex and Lipschitz log-likelihood functions, even
when the likelihood itself can be unbounded, while Zhang et al. (2016) used
posterior sampling as a method for providing DP for probabilistic graphical
models.

Finally, Geumlek et al. (2017) used RDP (see Definition 8) as the chosen
privacy definition, and allowed explicitly tuning either the prior strength or
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the likelihood temperature to guarantee the chosen privacy level even in
cases where a direct posterior sample could not provide it.

In Publication II, we use a similar likelihood temperature change with
very large data set sizes. Whereas in the posterior sampling approach
the temperature is treated as an additional hyperparameter for tuning the
privacy level (Wang et al., 2015; Geumlek et al., 2017), we instead change
the temperature to improve mixing properties of the Markov chain as well as
allow more free use of privacy amplification by subsampling (see Section 2.4)
with large data sets.

One major limitation with the DP via posterior sampling framework is
that the ability to easily draw samples from the exact posterior is limited to
quite specific models, e.g., it is possible in the conjugate-exponential family
or with suitable graphical models. However, when the sample instead comes
from an approximate posterior, the privacy guarantees weaken with the
distance from the true posterior (Wang et al., 2015; Minami et al., 2016),
and measuring the distance to an unknown posterior to establish the privacy
bounds is generally hard.

Another downside was pointed out by Foulds et al. (2016), based on the
observation that using the exponential mechanism for posterior sampling
can be alternatively viewed as increasing the model temperature depending
on the privacy parameter ε (Huang and Kannan, 2012): posterior sampling
via the exponential mechanism is not optimal in the asymptotic relative
efficiency sense. Yet another problem follows if we consider changing the
prior strength instead of changing the likelihood temperature: under some
assumptions, Dimitrakakis et al. (2017) showed that when the prior is chosen
to reflect the DP considerations instead of the actual prior knowledge, the
posterior utility will decrease with the prior strength.

3.2.2 Sufficient statistic perturbation

One alternative approach for DP Bayesian learning is based on randomising
the sufficient statistic (Dwork and Smith, 2010). As discussed in Section 3.1.1,
Bayesian learning for conjugate-exponential family models can be done
analytically. Since in this case the sufficient statistic contains all the information
needed about the sensitive data, DP can be enforced by perturbing the
sufficient statistic. This approach was first proposed by Zhang et al. (2016)
in the context of probabilistic graphical models, and later generalised and
analysed by Foulds et al. (2016).

In particular, Foulds et al. (2016) showed that sufficient statistic perturbation
using the Laplace mechanism (see Definition 14) has the optimal asymptotic
relative efficiency. On a related note, Honkela et al. (2018) showed that,
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under some assumptions, sufficient statistic perturbation using the Laplace
mechanism can be shown to have an optimal convergence rate in the sense
of being asymptotically efficiently private (AEP) as in Definition 43 below.

Definition 42 (Asymptotic consistency, Honkela et al. 2018). A differentially
private algorithmM is asymptotically consistent with respect to an estimated
parameter θ if the private estimates θ̂M given a data set x converge in
probability to the corresponding non-private estimates θ̂NP as the number
of samples, n = |x|, grows without bound, i.e., if for any α > 0,

lim
n→∞

P
[
∥θ̂M − θ̂NP ∥ > α

]
= 0. (3.25)

Definition 43 (Asymptotically efficiently private, Honkela et al. 2018).
A differentially private algorithm M is asymptotically efficiently private
with respect to an estimated parameter θ, if the algorithm is asymptotically
consistent and the private estimates θ̂M converge to the corresponding non-
private estimates θ̂NP at the rate O(1/n), i.e., if for any α > 0 there exist
constants C,N such that

P
[
∥θ̂M − θ̂NP ∥ > C/n

]
< α (3.26)

for all n ≥ N .

Honkela et al. (2018) also showed that the convergence rate in Definition 43
is optimal for any pure DP algorithm.

In Publication I, we establish corresponding results for the Gaussian
mechanism: the convergence rate in Definition 43 is also optimal for any
(ε, δ)-DP algorithm, and we show that estimating the means of multivariate
Gaussian observations bounded by some constant via sufficient statistic
perturbation using Gaussian noise is AEP. In particular, under the same
assumptions, estimating the posterior means of a Bayesian linear regression
model is AEP.

On a practical level, we show how to do DP Bayesian learning from
distributed data, based on the sufficient statistic perturbation with Gaussian
noise for exponential family models. For more complex differentiable models,
we propose to perturb the model gradients to guarantee ADP.

One problem with the naive sufficient statistic perturbation is that, as
noted by Bernstein and Sheldon (2018) (see also Williams and McSherry
2010), when the perturbation is not accounted for in the Bayesian learning,
the resulting DP posterior is not properly calibrated. Instead, Bernstein
and Sheldon (2018) proposed to include the additional uncertainty due to



3.2 DP Bayesian learning 43

DP into the Bayesian estimation. This guarantees that the resulting DP
posterior will be properly calibrated.

Unfortunately, the approach proposed by Bernstein and Sheldon (2018)
works for some exponential family models, but cannot be directly applied to
general models. Efficient methods that result in (nearly) properly calibrated
posteriors have subsequently been proposed for Bayesian linear regression
(Bernstein and Sheldon, 2019) as well as for Bayesian generalised linear
regression models (Kulkarni et al., 2021).

3.2.3 Approximate posterior sampling with DP MCMC

As already noted, the ability to sample from the exact posterior distribution
is limited to some special cases like the conjugate-exponential family models.
To allow DP Bayesian learning more generally, we need methods for DP
learning suitable for approximate posteriors. As discussed in Section 3.1,
MCMC is one common approach for approximating more general posterior
distributions using samples.

Wang et al. (2015) first noted that the non-private stochastic gradient
Langevin dynamics (SGLD) algorithm (Welling and Teh, 2011) is essentially
the same as DP-SGD (see Algorithm 1) without the per-example gradient
clipping. Hence, assuming that each per-example gradient is bounded and
that the step size is chosen appropriately, running SGLD will produce
samples from the posterior with DP guarantees.

One major problem with the analysis of Wang et al. (2015) is the
step size: since the step size depends on the privacy parameters, and
their analysis uses the advanced composition (see Theorem 25), the largest
possible step size allowed by the analysis tends to be too small for many
practical purposes. To fix this, Li et al. (2019) re-analysed the algorithm
using the RDP-based moments accountant, introduced by Abadi et al.
(2016), which allows for larger step sizes.

A more general limitation in using DP-SGD for posterior sampling is
the reliance on gradients: in case the model is not differentiable, gradient-
based sampling is clearly not possible. Foulds et al. (2016) proposed a
DP Gibbs sampler, a MCMC variant in which the parameters are updated
sequentially dimension by dimension via their conditional distributions. The
method is based either on perturbing the sufficient statistic via the Laplace
mechanism, which is possible when all the conditional distributions are in
the conjugate-exponential family, or more generally on analysing the Gibbs
sampler as an exponential mechanism (McSherry and Talwar, 2007). While
the more restricted sampler based on perturbing the sufficient statistic can
be practical for suitable models, the more general exponential mechanism
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interpretation still suffers from the fact that sampling from an arbitrary
distribution is generally hard even without privacy.

In Publication II, we introduce a general DP MCMC sampler based
on the Barker acceptance test. As discussed in Section 3.1.2, we show
that the inherent randomness in the accept-reject decision using the Barker
acceptance test guarantees RDP under some assumptions. A limitation of
the method is that it has a tight upper bound on the noise variance available
for DP due to the logistic noise decomposition used in the acceptance test.
With large data sets, however, we show how to leverage the subsampling
privacy amplification effect (see Section 2.4) to enable running longer chains
under tight privacy guarantees.

Concurrently with Publication II, Yıldırım and Ermiş (2019) introduced
another general MCMC algorithm based on the penalty MCMC algorithm
(Ceperley and Dewing, 1999), which can account for the DP noise added
for the accept-reject decision by tuning the acceptance rate according to the
noise level. Unlike the sampler introduced in Publication II, the method
based on the penalty algorithm enables adding arbitrary amounts of noise
in running the sampler. More recently, Räisä et al. (2021) proposed and
analysed DP Hamiltonian Monte Carlo, that builds on the DP penalty
algorithm of Yıldırım and Ermiş (2019).

3.2.4 DP variational inference

Besides MCMC, VI is another common approach for approximating posteriors
using some simpler family of distributions (see Section 3.1.3). Park et al.
(2020) proposed the first DP approach for VI based on sufficient statistic
perturbation.

Jälkö et al. (2017) introduced DP VI for non-conjugate models, building
on doubly-stochastic VI (Titsias and Lázaro-Gredilla, 2014) and on automatic
differentiation VI (Kucukelbir et al., 2017). In effect, the privacy results
from using DP-SGD (Algorithm 1) in optimising the variational parameters.

More recently, Vinaroz and Park (2022) proposed DP stochastic expectation
propagation, which is an alternative but related approximation method to
VI (Minka, 2005; Li et al., 2015). In their approach, DP is guaranteed again
via sufficient statistic perturbation.

In Publication IV, we consider VI in the cross-silo federated learning
setting, where the data are distributed among the clients (see Section 2.6),
using the partitioned VI framework (Ashman et al. 2022, see Section 3.1.3).
In this DP partitioned VI (DP-PVI) framework, we focus on models where
the approximating factors are in the exponential family and consider three
alternative implementations: one based on perturbing the local optimisation
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done by each party independently using DP-SGD (Algorithm 1), and two
based on perturbing the natural parameters of the model using the Gaussian
mechanism, since this general approach can be easily combined with secure
primitives, such as secure aggregation or secure shuffling (see Section 2.6).
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Chapter 4

Conclusion

The publications included in this dissertation introduced several novel methods
for DP Bayesian machine learning. These include variants of the most
common non-DP Bayesian learning methods, namely, learning in the conjugate-
exponential family, MCMC, and VI. The second important topic in the
publications is to consider learning from distributed data. Taken together,
the methods proposed in the articles allow for DP Bayesian machine learning
under various practical settings.

Considering open questions for future work, a major open problem
is learning properly calibrated posteriors under DP: most of the existing
methods do not include the additional uncertainty due to DP in the modelling.
This results in overconfident posterior distributions. As discussed in Section 3.2.2,
the currently existing solutions mainly work well for suitable exponential
family models, including for Bayesian linear and generalised linear regression.

Another mostly open problem concerns optimality of learning algorithms
under DP: many of the existing methods for DP Bayesian learning do not
have any known optimality guarantees. When considering learning from
distributed data, the question about optimality will include additionally
the amount of communication necessary. While there has been progress on
solving the trilemma of model utility, privacy, and communication (Chen
et al., 2023), in many cases this is still an open problem.

Finally, a largely orthogonal research direction involves privacy accounting:
considering a given DP Bayesian learning method, any improvement on the
privacy accounting translates directly into requiring less randomness in the
learning algorithm while keeping the same privacy guarantees.

The problem of privacy accounting has seen rapid progress during the
work on this dissertation, which can be seen in the results: when working on
Publication I, the classical Gaussian mechanism (see Section 2.3) was state
of the art, and the question about tight privacy bounds was generally an
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important open question in any given setting. In contrast, in Publication IV
we simply assume an oracle access to a black-box privacy accountant, and
then instantiate the oracle in practice using a readily available numerical
accountant implementation (Koskela et al., 2020b).

That said, there are still many open questions in privacy accounting.
One prominent example is the shuffle model of DP (see Section 2.6): while
we introduce numerical accounting for some common mechanisms in Publication
III, there are still standard mechanisms, such as the Gaussian mechanism
(see Section 2.3), for which the currently available privacy bounds cannot
be computed tightly in many cases due to computational issues.



Chapter 5

Thesis contribution

5.1 Publication I

In Publication I, we propose an approach for DP Bayesian learning on
distributed data. The method combines additive secret sharing with DP in
order to achieve better noise scaling than is possible with LDP approaches.
We introduce a secure aggregation protocol based on secret sharing for
settings where there are several servers available. The threat model for the
servers assumes that at least one of the servers does not collude with the
others.

For privacy, we propose guaranteeing ADP in the conjugate-exponential
family by perturbing the sufficient statistic, or more generally, by perturbing
the parameter gradients with Gaussian noise. We show that under some
assumptions, the sufficient statistic perturbation converges to the non-private
estimator with optimal rate as the number of samples increases. We test our
proposed method with Bayesian linear regression on several standard open
data sets, as well as with genomic data for a cancer cell drug sensitivity
prediction task.

5.2 Publication II

In Publication II, we introduce a general method for running MCMC under
RDP guarantees. The method is based on utilising the inherent randomness
present in the MCMC accept-reject decisions for the privacy analysis. The
main idea needed for this analysis is to represent the standard Barker
acceptance test as a standard logistic noise addition, and then break the
logistic noise into two random variables, where one is Gaussian and provides
RDP, and the second one represents a correction from the Gaussian to the
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logistic distribution.
Since the standard logistic noise requires a strict upper bound on the

variance available for the privacy analysis, we enhance the base method
by considering privacy amplification by data subsampling. Additionally, to
improve the mixing properties of the chain, as well as to enable running
the proposed method on larger data sets, we consider raising the likelihood
temperature, and connect this temperature change to robust Bayesian methods.

5.3 Publication III

In Publication III, we construct dominating pairs of distributions for some
common privacy mechanisms in the shuffle model of DP. By combining these
dominating pairs with existing privacy accounting techniques, we achieve
tighter privacy parameters than with the existing techniques, including
for composing subsampled mechanisms. We also consider improving the
runtime of the algorithms at the cost of slightly increasing the privacy
parameter δ by applying Hoeffding’s inequality in evaluating the required
privacy loss distributions.

More specifically, we construct dominating pairs of distributions valid
for any pure LDP mechanism, as well as for k-randomised response under
two different adversaries. A stronger adversary knows whether the values
communicated to the shuffler are randomised or not. We formulate and
derive results also for a weaker adversary, who has the same extra knowledge
except for a single party in the protocol, and show that this improves the
resulting privacy bounds.

5.4 Publication IV

In Publication IV, we propose differentially private partitioned variational
inference, a general framework for learning a DP variational approximation
to an intractable Bayesian posterior distribution in the federated learning
setting, while minimising the number of server-client communication rounds.

Within the general framework, we consider three specific implementations:
one based on perturbing the local optimisation runs done by the individual
parties, and two based on randomising the global model updates (one using
a version of federated averaging, one adding virtual parties to the protocol).
Given access to suitable secure primitives, such as secure aggregation or
secure shuffling, the privacy guarantees for both of the approaches randomising
the global model updates can be improved by all parties guaranteeing
privacy jointly.
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Finally, we compare the properties of the proposed implementations
both theoretically, deriving the main properties especially for the proposed
averaging approach, and empirically, using logistic regression and a fully
connected Bayesian neural network for classification tasks.
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Errata for Publication I
In Figures 2 and 3 in Publication I, the results are plotted also for

values ε > 1. This shows how the performance scales with increasing noise
variance, but none of the algorithms are guaranteed to be (ε, δ)-DP with the
stated privacy parameters when ε > 1 due to the properties of the classical
Gaussian mechanism.
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Abstract

Many applications of machine learning, for example in health care, would benefit
from methods that can guarantee privacy of data subjects. Differential privacy
(DP) has become established as a standard for protecting learning results. The
standard DP algorithms require a single trusted party to have access to the entire
data, which is a clear weakness, or add prohibitive amounts of noise. We consider
DP Bayesian learning in a distributed setting, where each party only holds a single
sample or a few samples of the data. We propose a learning strategy based on a
secure multi-party sum function for aggregating summaries from data holders and
the Gaussian mechanism for DP. Our method builds on an asymptotically optimal
and practically efficient DP Bayesian inference with rapidly diminishing extra
cost.

1 Introduction

Differential privacy (DP) [9, 11] has recently gained popularity as the theoretically best-founded
means of protecting the privacy of data subjects in machine learning. It provides rigorous guarantees
against breaches of individual privacy that are robust even against attackers with access to additional
side information. DP learning methods have been proposed e.g. for maximum likelihood estimation
[24], empirical risk minimisation [5] and Bayesian inference [e.g. 8, 13, 16, 17, 19, 25, 29]. There
are DP versions of most popular machine learning methods, including linear regression [16, 28],
logistic regression [4], support vector machines [5], and deep learning [1].

Almost all existing DP machine learning methods assume that some trusted party has unrestricted
access to all the data in order to add the necessary amount of noise needed for the privacy guarantees.
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This is a highly restrictive assumption for many applications, e.g. for learning with data on mobile
devices, and creates huge privacy risks through a potential single point of failure.

In this paper we introduce a general strategy for DP Bayesian learning in the distributed setting with
minimal overhead. Our method builds on the asymptotically optimal sufficient statistic perturbation
mechanism [13, 16] and shares its asymptotic optimality. The method is based on a DP secure
multi-party communication (SMC) algorithm, called Distributed Compute algorithm (DCA), for
achieving DP in the distributed setting. We demonstrate good performance of the method on DP
Bayesian inference using linear regression as an example.

1.1 Our contribution

We propose a general approach for privacy-sensitive learning in the distributed setting. Our approach
combines SMC with DP Bayesian learning methods, originally introduced for the non-distributed
setting including a trusted party, to achieve DP Bayesian learning in the distributed setting.

To demonstrate our framework in practice, we combine the Gaussian mechanism for (ε, δ)-DP with
efficient DP Bayesian inference using sufficient statistics perturbation (SSP) and an efficient SMC
approach for secure distributed computation of the required sums of sufficient statistics. We prove that
the Gaussian SSP is an efficient (ε, δ)-DP Bayesian inference method and that the distributed version
approaches this quickly as the number of parties increases. We also address the subtle challenge of
normalising the data privately in a distributed manner, required for the proof of DP in distributed DP
learning.

2 Background

2.1 Differential privacy

Differential privacy (DP) [11] gives strict, mathematically rigorous guarantees against intrusions on
individual privacy. A randomised algorithm is differentially private if its results on adjacent data
sets are likely to be similar. Here adjacency means that the data sets differ by a single element, i.e.,
the two data sets have the same number of samples, but they differ on a single one. In this work we
utilise a relaxed version of DP called (ε, δ)-DP [9, Definition 2.4].
Definition 2.1. A randomised algorithm A is (ε, δ)-DP, if for all S ⊆ Range (A) and all adjacent
data sets D,D′,

P (A(D) ∈ S) ≤ exp(ε)P (A(D′) ∈ S) + δ.

The parameters ε and δ in Definition 2.1 control the privacy guarantee: ε tunes the amount of privacy
(smaller ε means stricter privacy), while δ can be interpreted as the proportion of probability space
where the privacy guarantee may break down.

There are several established mechanisms for ensuring DP. We use the Gaussian mechanism [9,
Theorem 3.22]. The theorem says that given a numeric query f with `2-sensitivity ∆2(f), adding
noise distributed as N(0, σ2) to each output component guarantees (ε, δ)-DP, when

σ2 > 2 ln(1.25/δ)(∆2(f)/ε)2. (1)

Here, the `2-sensitivity of a function f is defined as

∆2(f) = sup
D∼D′

‖f(D)− f(D′)‖2, (2)

where the supremum is over all adjacent data sets D,D′.

2.2 Differentially private Bayesian learning

Bayesian learning provides a natural complement to DP because it inherently can handle uncertainty,
including uncertainty introduced to ensure DP [26], and it provides a flexible framework for data
modelling.

Three distinct types of mechanisms for DP Bayesian inference have been proposed:

1. Drawing a small number of samples from the posterior or an annealed posterior [7, 25];
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2. Sufficient statistics perturbation (SSP) of an exponential family model [13, 16, 19]; and
3. Perturbing the gradients in gradient-based MCMC [25] or optimisation in variational infer-

ence [17].

For models where it applies, the SSP approach is asymptotically efficient [13, 16], unlike the posterior
sampling mechanisms. The efficiency proof of [16] can be generalised to (ε, δ)-DP and Gaussian
SSP as shown in the Supplementary Material.

The SSP (#2) and gradient perturbation (#3) mechanisms are of similar form in that the DP mechanism
ultimately computes a perturbed sum

z =
N∑

i=1

zi + η (3)

over quantities zi computed for different samples i = 1, . . . , N , where η denotes the noise injected to
ensure the DP guarantee. For SSP [13, 16, 19], the zi are the sufficient statistics of a particular sample,
whereas for gradient perturbation [17, 25], the zi are the clipped per-sample gradient contributions.
When a single party holds the entire data set, the sum z in Eq. (3) can be computed easily, but the
case of distributed data makes things more difficult.

3 Secure and private learning with distributed data

Let us assume there are N data holders (called clients in the following), who each hold a single data
sample. We would like to use the aggregate data for learning, but the clients do not want to reveal
their data as such to anybody else. The main problem with the distributed setting is that if each client
uses a trusted aggregator (TA) DP technique separately, the noise η in Eq. (3) is added by each client,
increasing the total noise variance by a factor of N compared to the non-distributed single TA setting,
effectively reducing to naive input perturbation. To reduce the noise level without compromising on
privacy, the individual data samples need to be combined without directly revealing them to anyone.

Our solution to this problem uses an SMC approach based on a form of secret sharing: each client
sends their term of the sum, split to separate messages, to M servers such that together the messages
sum up to the desired value, but individually they are just random noise. This can be implemented
efficiently using a fixed-point representation of real numbers which allows exact cancelling of the
noise in the addition. Like any secret sharing approach, this algorithm is secure as long as not all M
servers collude. Cryptography is only required to secure the communication between the client and
the server. Since this does not need to be homomorphic as in many other protocols, faster symmetric
cryptography can be used for the bulk of the data. We call this the Distributed Compute Algorithm
(DCA), which we introduce next in detail.

3.1 Distributed compute algorithm (DCA)

In order to add the correct amount of noise while avoiding revealing the unperturbed data to any
single party, we combine an encryption scheme with the Gaussian mechanism for DP as illustrated in
Fig. 1(a). Each individual client adds a small amount of Gaussian noise to his data, resulting in the
aggregated noise to be another Gaussian with large enough variance. The details of the noise scaling
are presented in the Section 3.1.2.

The scheme relies on several independent aggregators, called Compute nodes (Algorithm 1). At
a general level, the clients divide their data and some blinding noise into shares that are each sent
to one Compute. After receiving shares from all clients, each Compute decrypts the values, sums
them and broadcasts the results. The final results can be obtained by summing up the values from all
Computes, which cancels the blinding noise.

3.1.1 Threat model

We assume there are at most T clients who may collude to break the privacy, either by revealing the
noise they add to their data samples or by abstaining from adding the noise in the first place. The rest
are honest-but-curious (HbC), i.e., they will take a peek at other people’s data if given the chance, but
they will follow the protocol.
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Figure 1: 1(a): Schematic diagram of the Distributed Compute algorithm (DCA). Red refers to
encrypted values, blue to unencrypted (but blinded or DP) values. 1(b) Extra scaling factor needed
for the noise in the distributed setting with T colluding clients as compared to the trusted aggregator
setting.

Algorithm 1 Distributed Compute Algorithm for distributed summation with independent Compute
nodes
Input: d-dimensional vectors zi held by clients i ∈ {1, . . . , N};

Distributed Gaussian mechanism noise variances σ2
j , j = 1, . . . , d (public);

Number of parties N (public);
Number of Compute nodes M (public);

Output: Differentially private sum
∑N

i=1 (zi + ηi), where ηi ∼ N (0,diag(σ2
j ))

1: Each client i simulates ηi ∼ N (0,diag(σ2
j )) and M − 1 vectors ri,k of uniformly random

fixed-point data with ri,M = −∑M−1
k=1 ri,k to ensure that

∑M
k=1 ri,k = 0d (a vector of zeros).

2: Each client i computes the messages mi,1 = zi + ηi + ri,1, mi,k = ri,k, k = 2, . . .M , and
sends them securely to the corresponding Compute k.

3: After receiving messages from all of the clients, Compute k decrypts the values and broadcasts
the noisy aggregate sums qk =

∑N
i=1 mi,k. A final aggregator will then add these to obtain∑M

k=1 qk =
∑N

i=1(zi + ηi).

To break the privacy of individual clients, all Compute nodes need to collude. We therefore assume
that at least one Compute node follows the protocol. We further assume that all parties have an
interest in the results and hence will not attempt to pollute the results with invalid values.

3.1.2 Privacy of the mechanism

In order to guarantee that the sum-query results returned by Algorithm 1 are DP, we need to show
that the variance of the aggregated Gaussian noise is large enough.
Theorem 1 (Distributed Gaussian mechanism). If at most T clients collude or drop out of the
protocol, the sum-query result returned by Algorithm 1 is (ε, δ)-DP, when the variance of the added
noise σ2

j fulfils

σ2
j ≥

1

N − T − 1
σ2
j,std,

where N is the number of clients and σ2
j,std is the variance of the noise in the standard (ε, δ)-DP

Gaussian mechanism given in Eq. (1).

Proof. See Supplement.

In the case of all HbC clients, T = 0. The extra scaling factor increases the variance of the DP, but
this factor quickly approaches 1 as the number of clients increases, as can be seen from Figure 1(b).
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3.1.3 Fault tolerance

The Compute nodes need to know which clients’ contributions they can safely aggregate. This feature
is simple to implement e.g. with pairwise-communications between all Compute nodes. In order to
avoid having to start from scratch due to insufficient noise for DP, the same strategy used to protect
against colluding clients can be utilized: when T > 0, at most T clients in total can drop or collude
and the scheme will still remain private.

3.1.4 Computational scalability

Most of the operations needed in Algorithm 1 are extremely fast: encryption and decryption can use
fast symmetric algorithms such as AES (using slower public key cryptography just for the key of the
symmetric system) and the rest is just integer additions for the fixed point arithmetic. The likely first
bottlenecks in the implementation would be caused by synchronisation when gathering the messages
as well as the generation of cryptographically secure random vectors ri,k.

3.2 Differentially private Bayesian learning on distributed data

In order to perform DP Bayesian learning securely in the distributed setting, we use DCA (Algorithm
1) to compute the required data summaries that correspond to Eq. (3). In this Section we consider
how to combine this scheme with concrete DP learning methods introduced for the trusted aggregator
setting, so as to provide a wide range of possibilities for performing DP Bayesian learning securely
with distributed data.

The aggregation algorithm is most straightforward to apply to the SSP method [13, 16] for exact and
approximate posterior inference on exponential family models. [13] and [16] use Laplacian noise to
guarantee ε-DP, which is a stricter form of privacy than the (ε, δ)-DP used in DCA [9]. We consider
here only (ε, δ)-DP version of the methods, and discuss the possible Laplace noise mechanism further
in Section 7. The model training in this case is done in a single iteration, so a single application of
Algorithm 1 is enough for learning. We consider a more detailed example in Section 3.2.1.

We can also apply DCA to DP variational inference [17, 19]. These methods rely on possibly clipped
gradients or expected sufficient statistics calculated from the data. Typically, each training iteration
would use only a mini-batch instead of the full data. To use variational inference in the distributed
setting, an arbitrary party keeps track of the current (public) model parameters and the privacy budget,
and asks for updates from the clients.

At each iteration, the model trainer selects a random mini-batch of fixed public size from the available
clients and sends them the current model parameters. The selected clients then calculate the clipped
gradients or expected sufficient statistics using their data, add noise to the values scaled reflecting the
batch size, and pass them on using DCA. The model trainer receives the decrypted DP sums from the
output and updates the model parameters.

3.2.1 Distributed Bayesian linear regression with data projection

As an empirical example, we consider Bayesian linear regression (BLR) with data projection in the
distributed setting. The standard BLR model depends on the data only through sufficient statistics
and the approach discussed in Section 3.2 can be used in a straightforward manner to fit the model by
running a single round of DCA.

The more efficient BLR with projection (Algorithm 2) [16] reduces the data range, and hence
sensitivity, by non-linearly projecting all data points inside stricter bounds, which translates into less
added noise. We can select the bounds to optimize bias vs. DP noise variance. In the distributed
setting, we need to run an additional round of DCA and use some privacy budget to estimate data
standard deviations (stds). However, as shown by the test results (Figures 2 and 3), this can still
achieve significantly better utility with a given privacy level.

The assumed bounds in Step 1 of Algorithm 2 would typically be available from general knowledge
of the data. The initial projection in Step 1 ensures the privacy of the scheme even if the bounds are
invalid for some samples. We determine the optimal final projection thresholds pj in Step 3 using the
same general approach as [16]: we create an auxiliary data set of equal size as the original with data
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Algorithm 2 Distributed linear regression with projection
Input: Data and target values (xij , yi), j = 1, . . . , d held by clients i ∈ {1, . . . , N};

Number of clients N (public);
Assumed data and target bounds (−cj , cj), j = 1, . . . , d+ 1 (public);
Privacy budget (ε, δ) (public);

Output: DP BLR model sufficient statistics of projected data
∑N

i=1 x̂ix̂
T
i +η(1),

∑N
i=1 x̂

T
i ŷi+η(2),

calculated using projection to estimated optimal bounds
1: Each client projects his data to the assumed bounds (−cj , cj) ∀j.
2: Calculate marginal std estimates σ(1), . . . , σ(d+1) by running Algorithm 1 using the assumed

bounds for sensitivity and a chosen share of the privacy budget.
3: Estimate optimal projection thresholds pj , j = 1, . . . , d + 1 as fractions of std on auxiliary

data. Each client then projects his data to the estimated optimal bounds (−pjσ(j), pjσ
(j)), j =

1, . . . , d+ 1.
4: Aggregate the unique terms in the DP sufficient statistics by running Algorithm 1 using the

estimated optimal bounds for sensitivity and the remaining privacy budget, and combine the
DP result vectors into the symmetric d × d matrix and d-dimensional vector of DP sufficient
statistics.

generated as

xi ∼ N(0, Id) (4)
β ∼ N(0, λ0I) (5)

yi|xi ∼ N(xTi β, λ). (6)

We then perform grid search on the auxiliary data with varying thresholds to find the one providing
optimal prediction performance. The source code for our implementation is available through GitHub1

and a more detailed description can be found in the Supplement.

4 Experimental setup

We demonstrate the secure DP Bayesian learning scheme in practice by testing the performance of
the BLR with data projection, the implementation of which was discussed in Section 3.2.1, along
with the DCA (Algorithm 1) in the all HbC clients distributed setting (T = 0).

With the DCA our primary interest is scalability. In the case of BLR implementation, we are
mostly interested in comparing the distributed algorithm to the trusted aggregator version as well as
comparing the performance of the straightforward BLR to the variant using data projection, since it is
not clear a priori if the extra cost in privacy necessitated by the projection in the distributed setting is
offset by the reduced noise level.

We use simulated data for the DCA scalability testing, and real data for the BLR tests. As real
data, we use the Wine Quality [6] (split into white and red wines) and Abalone data sets from the
UCI repository[18], as well as the Genomics of Drug Sensitivity in Cancer (GDSC) project data 2.
The measured task in the GDSC data is to predict drug sensitivity of cancer cell lines from gene
expression data (see Supplement for a more detailed description). The datasets are assumed to be
zero-centred. This assumption is not crucial but is done here for simplicity; non-zero data means can
be estimated like the marginal stds at the cost of some added noise (see Section 3.2.1).

For estimating the marginal std, we also need to assume bounds for the data. For unbounded data, we
can enforce arbitrary bounds simply by projecting all data inside the chosen bounds, although very
poor choice of bounds will lead to poor performance. With real distributed data, the assumed bounds
could differ from the actual data range. In the UCI tests we simulate this effect by scaling each data
dimension to have a range of length 10, and then assuming bounds of [−7.5, 7.5], i.e., the assumed
bounds clearly overestimate the length of the true range, thus adding more noise to the results. The
actual scaling chosen here is arbitrary. With the GDSC data, the true ranges are mostly known due to
the nature of the data (see Supplement).

1https://github.com/DPBayes/dca-nips2017
2http://www.cancerrxgene.org/, release 6.1, March 2017
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N=102 N=103 N=104 N=105

d=10 1.72 1.89 2.99 8.58
d=102 2.03 2.86 12.36 65.64
d=103 3.43 10.56 101.2 610.55
d=104 15.30 84.95 994.96 1592.29

Table 1: DCA experiment average runtimes in seconds with 5 repeats, using M=10 Compute nodes,
N clients and vector length d.

1.0 1.78 3.16 5.62 10.0 31.62
epsilon

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
A

E

NP
proj NP
TA

DDP
proj DDP

input
perturbed
proj TA

d=11, sample size=1000, repeats=25, δ= 0.0001

(a) Red wine data set

1.0 1.78 3.16 5.62 10.0 31.62
epsilon

1.0

1.5

2.0

2.5
M

A
E

NP
proj NP
TA

DDP
proj DDP

input
perturbed
proj TA

d=8, sample size=3000, repeats=25, δ= 0.0001

(b) Abalone data set
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(c) White wine data set

Figure 2: Median of the predictive accuracy measured on mean absolute error (MAE) on several
UCI data sets with error bars denoting the interquartile range (lower is better). The performance of
the distributed methods (DDP, DDP proj) is indistinguishable from the corresponding undistributed
algorithms (TA, TA proj) and the projection (proj TA, proj DDP) can clearly be beneficial for
prediction performance. NP refers to non-private version, TA to the trusted aggregator setting, DDP
to the distributed scheme.

The optimal projection thresholds are searched for using 10 (GDSC) or 20 (UCI) repeats on a grid
with 20 points between 0.1 and 2.1 times the std of the auxiliary data set. In the search we use one
common threshold for all data dimensions and a separate one for the target.

For accuracy measure, we use prediction accuracy on a separate test data set. The size of the test set
for UCI in Figure 2 is 500 for red wine, 1000 for white wine, and 1000 for abalone data. The test set
size for GDSC in Figure 3 is 100. For UCI, we compare the median performance measured on mean
absolute error over 25 cross-validation (CV) runs, while for GDSC we measure mean prediction
accuracy to sensitive vs insensitive with Spearman’s rank correlation on 25 CV runs. In both cases,
we use input perturbation [11] and the trusted aggregator setting as baselines.

5 Results

Table 1 shows runtimes of a distributed Spark implementation of the DCA algorithm. The timing
excludes encryption, but running AES for the data of the largest example would take less than 20
s on a single thread on a modern CPU. The runtime modestly increases as N or d is increased.
This suggests that the prototype is reasonably scalable. Spark overhead sets a lower bound runtime
of approximately 1 s for small problems. For large N and d, sequential communication at the 10
Compute threads is the main bottleneck. Larger N could be handled by introducing more Compute
nodes and clients only communicating with a subset of them.

Comparing the results on predictive error with and without projection (Fig. 2 and Fig. 3), it is clear
that despite incurring extra privacy cost for having to estimate the marginal standard deviations, using
the projection can improve the results markedly with a given privacy budget.

The results also demonstrate that compared to the trusted aggregator setting, the extra noise added due
to the distributed setting with HbC clients is insignificant in practice as the results of the distributed
and trusted aggregator algorithms are effectively indistinguishable.
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(a) Drug sensitivity prediction
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(b) Drug sensitivity prediction, selected methods

Figure 3: Mean drug sensitivity prediction accuracy on GDSC dataset with error bars denoting
standard deviation over CV runs (higher is better). Distributed results (DDP, proj DDP) do not differ
markedly from the corresponding trusted aggregator (TA, proj TA) results. The projection (proj TA,
proj DDP) is clearly beneficial for performance. The actual sample size varies between drugs. NP
refers to non-private version, TA to the trusted aggregator setting, DDP to the distributed scheme.

6 Related work

The idea of distributed private computation through addition of noise generated in a distributed
manner was first proposed by Dwork et al. [10]. However, to the best of our knowledge, there is no
prior work on secure DP Bayesian statistical inference in the distributed setting.

In machine learning, [20] presented the first method for aggregating classifiers in a DP manner, but
their approach is sensitive to the number of parties and sizes of the data sets held by each party and
cannot be applied in a completely distributed setting. [21] improved upon this by an algorithm for
distributed DP stochastic gradient descent that works for any number of parties. The privacy of the
algorithm is based on perturbation of gradients which cannot be directly applied to the efficient SSP
mechanism. The idea of aggregating classifiers was further refined in [15] through a method that uses
an auxiliary public data set to improve the performance.

The first practical method for implementing DP queries in a distributed manner was the distributed
Laplace mechanism presented in [22]. The distributed Laplace mechanism could be used instead
of the Gaussian mechanism if pure ε-DP is required, but the method, like those in [20, 21], needs
homomorphic encryption which is computationally more demanding, especially for high-dimensional
data.

There is a wealth of literature on secure distributed computation of DP sum queries as reviewed in
[14]. The methods of [23, 2, 3, 14] also include different forms of noise scaling to provide collusion
resistance and/or fault tolerance, where the latter requires a separate recovery round after data holder
failures which is not needed by DCA. [12] discusses low level details of an efficient implementation
of the distributed Laplace mechanism.

Finally, [27] presents several proofs related to the SMC setting and introduce a protocol for generating
approximately Gaussian noise in a distributed manner. Compared to their protocol, our method of
noise addition is considerably simpler and faster, and produces exactly instead of approximately
Gaussian noise with negligible increase in noise level.

7 Discussion

We have presented a general framework for performing DP Bayesian learning securely in a distributed
setting. Our method combines a practical SMC method for calculating secure sum queries with
efficient Bayesian DP learning techniques adapted to the distributed setting.
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DP methods are based on adding sufficient noise to effectively mask the contribution of any single
sample. The extra loss in accuracy due to DP tends to diminish as the number of samples increases
and efficient DP estimation methods converge to their non-private counterparts as the number of
samples increases [13, 16]. A distributed DP learning method can significantly help in increasing
the number of samples because data held by several parties can be combined thus helping make DP
learning significantly more effective.

Considering the DP and the SMC components separately, although both are necessary for efficient
privacy-aware learning, it is clear that the choice of method to use for each sub-problem can be
made largely independently. Assessing these separately, we can therefore easily change the privacy
mechanism from the Gaussian used in Algorithm 1 to the Laplace mechanism, e.g. by utilising one of
the distributed Laplace noise addition methods presented in [14] to obtain a pure ε-DP method. If
need be, the secure sum algorithm in our method can also be easily replaced with one that better suits
the security requirements at hand.

While the noise introduced for DP will not improve the performance of an otherwise good learning
algorithm, a DP solution to a learning problem can yield better results if the DP guarantees allow
access to more data than is available without privacy. Our distributed method can further help make
this more efficient by securely and privately combining data from multiple parties.
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Supplement to “Differentially private Bayesian
learning on distributed data”

Mikko Heikkilä, Eemil Lagerspetz, Samuel Kaski,
Kana Shimizu, Sasu Tarkoma, and Antti Honkela

This supplement contains proofs and extra discussion omitted from the main text.

1 Privacy and fault tolerance

Theorem 1 (Distributed Gaussian mechanism). If at most T clients collude or drop out of the
protocol, the sum-query result returned by Algorithm 1 is differentially private, when the variance of
the added noise σ2

j fulfils

σ2
j ≥

1

N − T − 1
σ2
j,std,

where N is the number of clients and σ2
j,std is the variance of the noise in the standard Gaussian

mechanism given in Eq. (1).

Proof. Using the property that a sum of independent Gaussian variables is another Gaussian with
variance equal to the sum of the component variances, we can divide the total noise equally among
the N clients.

However, in the distributed setting even with all honest-but-curious clients, there is an extra scaling
factor needed compared to the standard DP. Since each client knows the noise values she adds to
the data, she can also remove them from the aggregate values. In other words, privacy then has
to be guaranteed by the noise the remaining N − 1 clients add to the data. If we further assume
the possibility of T colluding clients, then the noise from N − T − 1 clients must be sufficient to
guarantee the privacy.

The added noise can therefore be calculated from the inequality

N−T−1∑

i=1

σ2
j ≥ σ2

j,std (1)

⇔ σ2
j ≥

1

N − T − 1
σ2
j,std. (2)

2 Bayesian linear regression

In the following, we denote the d-dimensional input data for the ith observation by xi, the scalar
target values by yi, and the whole d + 1−dimensional dataset by Di = (xi, yi). We assume all
variable-wise expectations to be zeroes for simplicity. For n observations, we denote the sufficient
statistics by nxx =

∑n
i=1 xix

T
i and nxy =

∑n
i=1 xiyi.

For the regression, we assume that

yi|xi ∼ N(xTi β, λI), i = 1, . . . , n (3)
β ∼ N(0, λ0I), (4)
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where we want to learn the posterior over β, and λ, λ0 are hyperparameters (set to 1 in the tests). The
posterior can be solved analytically to give

β|y,x ∼ N(µ̂, Λ̂), (5)

Λ̂ = λ0I + λnxx, (6)

µ̂ = Λ̂−1(λnxy). (7)

The predicted mean values from the model are ŷ = xT µ̂.

The DP sufficient statistics are given by nx̂x = nxx + ηxx, nx̂y = nxy + ηxy, where ηxx, ηxy
consist of suitably scaled Gaussian noise added independently to each dimension. In total, there are
d(d+ 1)/2 + d parameters in the combined sufficient statistic, since nxx is a symmetric matrix.

The main idea in the data projection is simply to project the data into some reduced range. Since the
noise level is determined by the sensitivity of the data, reducing the sensitivity by limiting the data
range translates into less added noise.

With projection threshold c, the projection of data xi is given by

x̆i = max(−c,min(xi, c)). (8)

This data projection obviously discards information, but in various problems it can be beneficial
to disregard some information in the data in order to achieve less noisy estimates of the model
parameters. From the bias-variance trade-off point of view, this can be seen as increasing the bias
while reducing the variance. The optimal trade-off then depends on the actual problem.

To run Algorithm 2 (in the main text), we need to assume initial projection bounds (cj , dj) for each
dimension j ∈ {1, . . . , d+ 1} for the data (xi, yi)

n
i=1. In the paper we assume bounds of the form

(−cj , cj). To find good final projection bounds, we first find an optimal projection threshold by a grid
search on an auxiliary dataset, that is generated from a BLR model similar to the regression model
defined above.

This gives us the projection thresholds in terms of std for each dimension. We then estimate the
marginal std for each dimension by using Algorithm 1 (in the main text), to fix the actual projection
thresholds. For this the data are assumed to lie on some known bounded interval. In practice, the
assumed bounds need to be based on prior information. In case the estimates are negative due to
noise, they are set to small positive constants (0.5 in all the tests).

The amount of noise each client needs to add to the output depends partly on the sensitivity of the
function in question. The query function we are interested in returns a vector of length d(d+1)/2+d
that contains all the unique terms in the sufficient statistics needed for linear regression.

Let x,x′ be the mismatching, maximally different elements over adjacent datasets s.t. dimensions
1, . . . , d are the independent variables, and d+ 1 is the target. Assume further that each dimension
j = 1, . . . , d+ 1 is bounded by (−cj , cj). The squared sensitivity of the query f is then

∆2(f)2 = ||f(x)− f(x′)||22 (9)

= ||(xjxk − x′jx′k, xjxd+1 − x′jx′d+1)dj=1,k=j ||22 (10)

=

d∑

j=1

d∑

k=j

(xjxk − x′jx′k)2 +

d∑

j=1

(xjxd+1 − x′jx′d+1)2 (11)

≤
d∑

j=1

(c2j )
2 +

d∑

j=1

d∑

k>j

(2cjck)2 +
d∑

j=1

(2cjcd+1)2. (12)

We assume cj = cx∀j = 1, . . . , d, so (12) can be further simplified to d(2d− 1)c4x + 4d(cxcd+1)2.

3 Asymptotic efficiency of the Gaussian mechanism

The asymptotic efficiency of the sufficient statistics perturbation using Laplace mechanism has been
proven before [2, 3]. We show corresponding results for the Gaussian mechanism. The proofs
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generally follow closely those given in [3]. For convenience, we state the relevant definitions, but
mostly focus on those proofs that differ in a non-trivial way from the existing ones for the Laplace
mechanism. For the full proofs and related discussion, see [3].

3.1 Definition of asymptotic efficiency

Definition 3.1. A differentially private mechanismM is asymptotically consistent with respect to an
estimated parameter θ if the private estimates θ̂M given a data set D converge in probability to the
corresponding non-private estimates θ̂NP as the number of samples, n = |D|, grows without bound,
i.e., if for any1 α > 0,

lim
n→∞

Pr{‖θ̂M − θ̂NP ‖ > α} = 0.

Definition 3.2. A differentially private mechanism M is asymptotically efficiently private with
respect to an estimated parameter θ, if the mechanism is asymptotically consistent and the private
estimates θ̂M converge to the corresponding non-private estimates θ̂NP at the rate O(1/n), i.e., if for
any α > 0 there exist constants C,N such that

Pr{‖θ̂M − θ̂NP ‖ > C/n} < α

for all n ≥ N .

The first part of Theorem 2 follows closely the corresponding result for the Laplace mechanism [3,
Theorem 1]. The theorem shows that the optimal rate for estimating the expectation of exponential
family distributions is O(1/n). This justifies the term asymptotically efficiently private introduced
by [3], when we show that sufficient statistics perturbation by the Gaussian mechanism achieves this
rate.
Theorem 2. The private estimates θ̂M of an exponential family posterior expectation parameter θ,
generated by a differentially private mechanismM that achieves (ε, δ)-differential privacy for any
ε > 0, δ ∈ (0, 1), cannot converge to the corresponding non-private estimates θ̂NP at a rate faster
than 1/n. That is, assumingM is (ε, δ)-differentially private, there exists no function f(n) such that
lim supnf(n) = 0 and for all α > 0, there exists a constant N such that

Pr{‖θ̂M − θ̂NP ‖ > f(n)} < α

for all n ≥ N .

Proof. The non-private estimate of an expectation parameter of an exponential family is [1]

θ̂NP |x1, . . . , xn =
n0x0 +

∑n
i=1 xi

n0 + n
. (13)

The difference of the estimates from two neighbouring data sets differing by one element is

(θ̂NP |D)− (θ̂NP |D′) =
x− y
n0 + n

, (14)

where x and y are the corresponding mismatched elements. Let ∆ = max(‖x− y‖), and let D and
D′ be neighbouring data sets including these maximally different elements.

Let us assume that there exists a function f(n) such that lim supnf(n) = 0 and for all α > 0 there
exists a constant N such that

Pr{‖θ̂M − θ̂NP ‖ > f(n)} < α (15)

for all n ≥ N .

Fix α > 0 and choose M ≥ max(N,n0) such that f(n) ≤ ∆/4n for all n ≥M . This implies that

‖(θ̂NP |D)− (θ̂NP |D′)‖ =
∆

n0 + n
≥ ∆

2n
≥ 2f(n). (16)

Let us define the region CD = {t | ‖(θ̂NP |D)− t‖ < f(n)}.
1We use α in limit expressions instead of usual ε to avoid confusion with ε-differential privacy.
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Based on our assumptions we have

Pr
(

(θ̂M|D) ∈ CD
)
> 1− α. (17)

Combining (16) and (15) we have

Pr
(

(θ̂M|D′) ∈ CD
)
< α (18)

which implies

Pr
(

(θ̂M|D) ∈ CD
)
≤ exp(ε)Pr

(
(θ̂M|D′) ∈ CD

)
+ δ. (19)

Together these imply that

1− α < exp(ε)α+ δ (20)
⇔ δ > 1− (1 + exp(ε))α. (21)

Since for fixed ε, limα→0 1− (1 + exp(ε))α = 1,M cannot be (ε, δ)-differentially private with any
ε and δ < 1.

Before the next theorem, we prove Lemma 1, which is not used in [3].
Lemma 1. Let x ∈ Rd, x ∼ N(0, σ2I). The tail probability of the `1 norm of x obeys

Pr(‖x‖1 ≥ t) ≤
dσ2

(
t−
√

2/πdσ
)2
(

1− 2

π

)
. (22)

Proof. ‖x‖1 =
∑d
i=1 |xi| =

∑d
i=1 yi, where xi ∼ N(0, σ2) and yi follows the half-normal distribu-

tion with variance σ2.

It is known that E[yi] =
√

2/πσ and Var[yi] = σ2(1− 2/π).

Because yi are independent, E[‖x‖1] = dE[yi] =
√

2/πdσ and Var[‖x‖1] = dVar[yi] = dσ2(1−
2/π).

Setting a = t−
√

2/πdσ we have

Pr(‖x‖1 ≥ t) = Pr
(
‖x‖1 ≥ a+

√
2/πdσ

)

≤ Pr
(∣∣∣‖x‖1 −

√
2/πdσ

∣∣∣ ≥ a
)

≤ dσ2

(
t−
√

2/πdσ
)2
(

1− 2

π

)
.

where the last inequality follows from Chebyshev’s inequality.

3.1.1 Asymptotic efficiency of Gaussian means

Theorem 3, showing one case of asymptotic efficiency of the Gaussian mechanism, corresponds to [3,
Theorem 5], although the proof is somewhat different.
Theorem 3. (ε, δ)-differentially private estimate of the mean of a d-dimensional Gaussian variable
x bounded by ‖xi‖1 ≤ B in which the Gaussian mechanism is used to perturb the sufficient statistics,
is asymptotically efficiently private.

Proof. Following [3, Theorem 3], it is trivial to show that

‖µDP − µNP ‖1 ≤
c

n
‖δ‖1,

where δ = (δ1, . . . , δd)
T ∈ RD with δj ∼ N

(
0, σ2

j

)
holds when we utilize the Gaussian mechanism

instead of the Laplace mechanism. This allows us to bound the corresponding tail probabilities by
using Lemma 1.
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Therefore, given α > 0, we can guarantee that

Pr

{
‖µDP − µNP ‖1 >

C

n

}
≤ Pr

{
1

n
‖δ‖1 >

C

n

}
= Pr{‖δ‖1 > C} < α, (23)

by choosing C according to Lemma 1.

3.2 Asymptotic efficiency of DP linear regression

Theorem 4 that establishes asymptotic efficiency for DP linear regression using the Gaussian mech-
anism, for the most part follows [3, Theorem 8]. We concentrate here more closely only on the
differing parts.
Theorem 4. (ε, δ)-differentially private inference of the posterior mean of the weights of linear
regression with the Gaussian mechanism used to perturb the sufficient statistics is asymptotically
efficiently private.

Proof. Following the proof of [3, Theorem 7] with minimal changes we have

‖µDP − µNP ‖1 ≤
∥∥(Λ0 + Λ(nxx+ ∆))−1Λδ

∥∥
1

+

∥∥∥∥∥

[(
1

n
Λ0 + Λ

(
xx+

1

n
∆

))−1
−
(

1

n
Λ0 + Λxx

)−1](
Λxy +

1

n
Λ0β0

)∥∥∥∥∥
1

, (24)

where ∆ is the noise contribution from the Gaussian mechanism added to the sufficient statistics xx
(see Section 2 in this supplement).

As in [3, Theorem 7], the first term can be bounded as
∥∥(Λ0 + Λ(nxx+ ∆))−1Λδ

∥∥
1
≤ c1

n

∥∥(xx)−1
∥∥
1
‖δ‖1 (25)

where c1 > 1, for large enough n.

As done in the proof of Theorem 3, given α > 0, Lemma 1 can be used to ensure that

Pr

{
‖(Λ0 + Λ(nxx+ ∆))−1Λδ‖1 >

C1

n

}
<
α

2
, (26)

by choosing a suitable C1.

Again, following [3, Theorem 7], the second term can be bounded as
∥∥∥∥∥

[(
1

n
Λ0 + Λ

(
xx+

1

n
∆

))−1
−
(

1

n
Λ0 + Λxx

)−1](
Λxy +

1

n
Λ0β0

)∥∥∥∥∥
1

≤ c2
n

∥∥∥(xx)
−1
∥∥∥
1
‖∆‖1

∥∥∥(xx)
−1
∥∥∥
1
‖xy‖1 ,

where, as in Eq. (25), the bound is valid for c2 > 1 as n gets large enough.

‖∆‖1 here is the `1-norm of the symmetric matrix ∆, that is comprised of a vector of d(d + 1)/2
unique noise terms, each generated independently from a Normal distribution according to the
Gaussian mechanism. Denoting this vector by v, a bound to the matrix norm is given by ‖∆‖1 ≤
‖v‖1.

Therefore, given α > 0, we can again use Lemma 1 to find a suitable C2 s.t.

Pr




‖∆‖1 >

C2

c2

∥∥∥(xx)
−1
∥∥∥
2

1
‖xy‖1




≤ Pr




‖v‖1 >

C2

c2

∥∥∥(xx)
−1
∥∥∥
2

1
‖xy‖1




<
α

2
. (27)

By combining Eqs. (26) and (27) we get

Pr

{
‖µDP − µNP ‖1 >

C1 + C2

n

}
< α. (28)
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4 GDSC dataset description

The data were downloaded from the Genomics of Drug Sensitivity in Cancer (GDSC) project, release
6.1, March 2017, http://www.cancerrxgene.org/. We use gene expression and drug sensitivity data.
The gene expression dimensionality is reduced to 10 genes used for the actual prediction task, based
on prior information about their mutation counts in cancer (we use the same procedure as [3]). The
dataset used for learning contains 940 cell lines and drug sensitivity data for 265 drugs. Some of the
values are missing, so the actual number of observations varies between the drugs. We use a test set
of size 100 and the rest of the available data for learning.

Since we want to focus on the relative expression of the genes, each data point is normalized to have
`2-norm of 1. In the distributed setting this can be done by each client without breaching privacy.
After the scaling, we know that all dimensions are bounded by [−1, 1], except the target. For the
target dimension, the true range varies between the drugs. The average width of the ranges is 8.6.

We assume a range of [-7.5,7.5] for the marginal std estimation needed for the projection, and use a
symmetric bound given by [−dmax |y|e, dmax |y|e] for the non-projected baseline methods (DDP,
TA). The exact bound for the baseline methods varies between the drugs while the average is 6.8. In
other words, the projected methods add somewhat more extra noise to the results on average. We also
tested the performance using a fixed bound for the non-projected methods as with the UCI data, but
the results did not change markedly (not included in the paper).
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Abstract

Recent developments in differentially private (DP) machine learning and DP
Bayesian learning have enabled learning under strong privacy guarantees for the
training data subjects. In this paper, we further extend the applicability of DP
Bayesian learning by presenting the first general DP Markov chain Monte Carlo
(MCMC) algorithm whose privacy-guarantees are not subject to unrealistic assump-
tions on Markov chain convergence and that is applicable to posterior inference
in arbitrary models. Our algorithm is based on a decomposition of the Barker
acceptance test that allows evaluating the Rényi DP privacy cost of the accept-
reject choice. We further show how to improve the DP guarantee through data
subsampling and approximate acceptance tests.

1 Introduction

Differential privacy (DP) [Dwork et al., 2006, Dwork and Roth, 2014] and its generalisations to
concentrated DP [Dwork and Rothblum, 2016, Bun and Steinke, 2016] and Rényi DP [Mironov,
2017] have recently emerged as the dominant framework for privacy-preserving machine learning.
There are DP versions of many popular machine learning algorithms, including highly popular and
effective DP stochastic gradient descent (SGD) [Song et al., 2013] for optimisation-based learning.

There has also been a fair amount of work in DP Bayesian machine learning, with the proposed
approaches falling to three main categories: i) DP perturbation of sufficient statistics for inference in
exponential family models [e.g. Zhang et al., 2016, Foulds et al., 2016, Park et al., 2016, Bernstein
and Sheldon, 2018], ii) gradient perturbation similar to DP SGD for stochastic gradient Markov chain

∗These authors contributed equally to this work.
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Monte Carlo (MCMC) and variational inference [e.g. Wang et al., 2015, Jälkö et al., 2017, Li et al.,
2019], and iii) DP guarantees for sampling from the exact posterior typically realised using MCMC
[e.g. Dimitrakakis et al., 2014, Zhang et al., 2016, Geumlek et al., 2017].

None of these provide fully general solutions: i) sufficient statistic perturbation methods are limited
to a restricted set of models, ii) stochastic gradient methods lack theoretical convergence guarantees
and are limited to models with continuous variables, iii) posterior sampling methods are applicable to
general models, but the privacy is conditional on exact sampling from the posterior, which is usually
impossible to verify in practice.

In this paper, we present a new generic DP-MCMC method with strict, non-asymptotic privacy
guarantees that hold independently of the chain’s convergence. Our method is based on a recent
Barker acceptance test formulation [Seita et al., 2017].

1.1 Our contribution

We present the first general-purpose DP MCMC method with a DP guarantee under mild assumptions
on the target distribution. We mitigate the privacy loss induced by the basic method through a
subsampling-based approximation. We also improve on the existing method of Seita et al. [2017] for
subsampled MCMC, resulting in a significantly more accurate method for correcting the subsampling
induced noise distribution.

2 Background

2.1 Differential privacy

Definition 1 (Differential privacy). A randomized algorithmM : XN → I satisfies (ε, δ) differential
privacy, if for all adjacent datasets x,x′ ∈ XN and for all measurable I ⊂ I it holds that

Pr(M(x) ∈ I) ≤ eε Pr(M(x′) ∈ I) + δ. (1)

Adjacency here means that |x| = |x′|, and x differs from x′ by a single element, e.g. by a single row
corresponding to one individual’s data in a data matrix.

Recently Mironov [2017] proposed a Rényi divergence [Rényi, 1961] based relaxation for differential
privacy called Rényi differential privacy (RDP).
Definition 2 (Rényi divergence). Rényi divergence between two distributions P and Q defined over
I is defined as

Dα(P ||Q) =
1

α− 1
logEP

[(
p(X)

q(X)

)α−1
]
. (2)

Definition 3 (Rényi differential privacy). A randomized algorithmM : XN → I is (α, ε)-RDP, if
for all adjacent datasets x,x′ it holds that

Dα(M(x) ||M(x′)) ≤ ε ∆
= ε(α). (3)

Like DP, RDP has many useful properties such as invariance to post-processing. The main advantage
of RDP compared to DP is the theory providing tight bounds for doing adaptive compositions, i.e.,
for combining the privacy losses from several possibly adaptive mechanisms accessing the same
data, and subsampling [Wang et al., 2019]. RDP guarantees can always be converted to (ε, δ)-DP
guarantees. These existing results are presented in detail in the Supplement.

2.2 Subsampled MCMC using Barker acceptance

The fundamental idea in standard MCMC methods [Brooks et al., 2011] is that a distribution π(θ)
that can only be evaluated up to a normalising constant, is approximated by samples θ1, . . . , θt
drawn from a suitable Markov chain. Denoting the current parameter values by θ, the next value is
generated using a proposal θ′ drawn from a proposal distribution q(θ′|θ). An acceptance test is used
to determine if the chain should move to the proposed value or stay at the current one.
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Denoting the acceptance probability by α(θ′, θ), a test that satisfies detailed balance
π(θ)q(θ′|θ)α(θ′, θ) = π(θ′)q(θ|θ′)α(θ, θ′) together with ergodicity of the chain are sufficient condi-
tions to guarantee asymptotic convergence to the correct invariant distribution π(θ). In Bayesian infer-
ence, we are typically interested in sampling from the posterior distribution, i.e., π(θ) ∝ p(x|θ)p(θ).
However, it is computationally infeasible to use e.g. the standard Metropolis-Hastings (M-H) test
[Metropolis et al., 1953, Hastings, 1970] with large datasets, since each iteration would require
evaluating p(x|θ).

To solve this problem in the non-private setting, Seita et al. [2017] formulate an approximate test that
only uses a fraction of the data at each iteration. In the rest of this Section we briefly rephrase their
arguments most relevant for our approach without too much details. A more in-depth treatment is
then presented in deriving DP MCMC in Section 3.

We start by assuming the data are exchangeable, so p(x|θ) =
∏
xi∈x p(xi|θ). Let

∆(θ′, θ) =
∑

xi∈x
log

p(xi|θ′)
p(xi|θ)

+ log
p(θ′)q(θ|θ′)
p(θ)q(θ′|θ) , (4)

where we suppress the parameters for brevity in the following, and let Vlog ∼ Logistic(0, 1). Instead
of using the standard M-H acceptance probability min{exp(∆), 1}, Seita et al. [2017] use a form of
Barker acceptance test [Barker, 1965] to show that testing if

∆ + Vlog > 0 (5)

also satisfies detailed balance. To ease the computational burden, we now want to use only a random
subset S ⊂ x of size b instead of full data of size N to evaluate acceptance. Let

∆∗(θ′, θ) =
N

b

∑

xi∈S
log

p(xi|θ′)
p(xi|θ)

+ log
p(θ′)q(θ|θ′)
p(θ)q(θ′|θ) . (6)

Omitting the parameters again, ∆∗ is now an unbiased estimator for ∆, and assuming xi are iid
samples from the data distribution, ∆∗ has approximately normal distribution by the Central Limit
Theorem (CLT).

In order to have a test that approximates the exact full data test (5), we decompose the logistic noise
as Vlog ' Vnorm + Vcor, where Vnorm has a normal distribution and Vcor is a suitable correction.
Relying on the CLT and on this decomposition we write ∆∗+Vcor ' ∆+Vnorm+Vcor ' ∆+Vlog,
so given the correction we can approximate the full data exact test using a minibatch.

2.3 Tempering

When the sample size N is very large, one general problem in Bayesian inference is that the posterior
includes more and more details. This often leads to models that are much harder to interpret while
only marginally more accurate than simpler models (see e.g. Miller and Dunson 2019). One way
of addressing this issue is to scale the log-likelihood ratios in (4) and (6), so instead of log p(xi|θ)
we would have τ log p(xi|θ) with some τ. The effect of scaling with 0 < τ < 1 is then to spread the
posterior mass more evenly. We will refer to this scaling as tempering.

As an interesting theoretical justification for tempering, Miller and Dunson [2019] show a relation
between tempered likelihoods and modelling error. The main idea is to take the error between the
theoretical pure data and the actual observable data into account in the modelling. Denote the observed
data with lowercase and errorless random variables with uppercase letters, and let R ∼ Exp(β). Then
using empirical KL divergence as our modelling error estimator dN , instead of the standard posterior
we are looking for the posterior conditional on the observed data being close to the pure data, i.e., we
want p(θ|dN (x1:N , X1:N ) < R), which is called coarsened posterior or c-posterior.

Miller and Dunson [2019] show that with these assumptions

p(θ|dN (x1:N , X1:N ) < R) ∝∼ p(x|θ)ξN p(θ), (7)

where∝∼means approximately proportional to, and ξN = 1/(1+N/β), i.e., a posterior with tempered
likelihoods can be interpreted as an approximate c-posterior.
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3 Privacy-preserving MCMC

Our aim is to sample from the posterior distribution of the model parameters while ensuring dif-
ferential privacy. We start in Section 3.2 by formulating DP MCMC based on the exact full data
Barker acceptance presented in Section 2.2. To improve on this basic algorithm, we then introduce
subsampling in Section 3.3. The resulting DP subsampled MCMC algorithm has significantly better
privacy guarantees as well as computational requirements than the full data version.

3.1 Notation

There are multiple different factors that we use in the privacy analysis. Table 1 includes all the
necessary factors used.

Notation Explanation
α Parameter for RDP
T Number of MCMC draws
N Dataset size
C ∈ (0, π2/3) Noise variance, in Section 3.3 we set C = 2
B Assumed bound for the log-likelihood ratios (llr) w.r.t. data OR the parameters
b > 5α Batch size for subsampled DP-MCMC
β Parameter for tempering

Table 1: Table of the notation used in Section 3.

3.2 DP MCMC

To achieve privacy-preserving MCMC, we repurpose the decomposition idea mentioned in Section 2.2
with subsampling, i.e., we decompose Vlog in the exact test (5) into normal and correction variables.
Noting that Vlog has variance π2/3, fix 0 < C < π2/3 a constant and write

Vlog ' N (0, C) + V (C)
cor , (8)

where V (C)
cor is the correction with variance π2/3− C. Now testing if

N (∆, C) + V (C)
cor > 0 (9)

is approximately equivalent to (5).

Since (8) holds exactly for no known distribution V (C)
cor with an analytical expression, Seita et al.

[2017] construct an approximation by discretising the convolution implicit in (8), and turning the
problem into a ridge regression problem which can be solved easily. Unlike Seita et al. [2017], we
aim for preserving privacy. We therefore want to work with relatively large values of C for which the
ridge regression based solution does not give a good approximation. Instead, we propose to use a
Gaussian mixture model approximation, which gives good empirical performance for larger C as
well. The details of the approximation with related discussion can be found in the Supplement.

In practice, if V (C)
cor is an approximation, the stationary distribution of the chain might not be the

exact posterior. However, when the approximation (8) is good, the accept-reject decisions are rarely
affected and we can expect to stay close to the true posterior. Clearly, in the limit of decreasing C we
recover the exact test (5). We return to this topic in Section 3.3.

Considering privacy, on each MCMC iteration we access the data only through the log-likelihood
ratio ∆ in the test (9). To achieve RDP, we therefore need a bound for the Rényi divergence between
two Gaussians Nx = N (∆x, C) and Nx′ = N (∆x′ , C) corresponding to neighbouring datasets
x,x′. The following Lemma states the Rényi divergence between two Gaussians:
Lemma 1. Rényi divergence between two normals N1 and N2 with parameters µ1, σ1 and µ2, σ2

respectively is

Dα(N1 || N2) = ln
σ2

σ1
+

1

2(α− 1)
ln
σ2

2

σ2
α

+
α

2

(µ1 − µ2)2

σ2
α

, (10)

where σ2
α = ασ2

2 + (1− α)σ2
1 .
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Proof. See [Gil et al., 2013] Table 2.

Theorem 1. Assume either

| log p(xi | θ′)− log p(xi | θ)| ≤ B (11)

or

| log p(xi | θ)− log p(xj | θ)| ≤ B, (12)

for all xi, xj and for all θ, θ′. Releasing a result of the accept/reject decision from the test (9) is
(α, ε)-RDP with ε = 2αB2/C.

Proof. Follows from Lemma 1. See Supplement for further details.

Using the composition property of RDP (see Supplement), it is straightforward to get the following
Corollary for the whole chain:
Corollary 1. Releasing an MCMC chain of T iterations, where at each iteration the accept-reject
decision is done using the test (9), satisfies (α, ε′)-RDP with ε′ = T2αB2/C.

We can satisfy the condition (11) with sufficiently smooth likelihoods and a proposal distribution
with a bounded domain:
Lemma 2. Assuming the model log-likelihoods are L-Lipschitz over θ and the diameter of the
proposal distribution domain is bounded by dθ, LHS of (11) is bounded by Ldθ.

Proof.
|log p(xi | θ)− log p(xi | θ′)| ≤ L|θ − θ′| ≤ Ldθ. (13)

Clearly, when Ldθ ≤ B we satisfy the condition in Equation (11).

For some models, using a proposal distribution with a bounded domain could affect the ergodicity of
the chain. Considering models that are not Lipschitz or using an unbounded proposal distribution,
we can also satisfy the boundedness condition (11) by clipping the log-likelihood ratios to a suitable
interval.

3.3 DP subsampled MCMC

In Section 3.2 we showed that we can release samples from the MCMC algorithm under privacy
guarantees. However, as already discussed, evaluating the log-likelihood ratios might require too
much computation with large datasets. Using the full dataset in the DP MCMC setting might also be
infeasible for privacy reasons: the noise variance C in Theorem 1 is upper-bounded by the variance
of the logistic random variable, and thus working under a strict privacy budget we might be able to
run the chain for only a few iterations before ε′ in Corollary 1 exceeds our budget. Using only a
subsample S of the data at each MCMC iteration allows us to reduce not only the computational cost
but also the privacy cost through privacy amplification [Wang et al., 2019].

As stated in Section 2.2, for the subsampled variant according to the CLT we have

∆∗ = ∆ + Ṽnorm, (14)

where Ṽnorm is approximately normal with some variance σ2
∆∗ . Assuming

σ2
∆∗ < C < π2/3 (15)

for some constant C, we now reformulate the decomposition (8) as

Vlog ' Vnorm + Vnc︸ ︷︷ ︸
∼N (0,C)

+ V (C)
cor , (16)

where Vnorm ∼ N (0, σ2
∆∗) and Vnc ∼ N (0, C − σ2

∆∗). We can now write

∆∗ + Vnc + V (C)
cor ' ∆ + Vnorm + Vnc + V (C)

cor ' ∆ + Vlog, (17)
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where the first approximation is justified by the CLT, and the second by the decomposition (16).
Therefore, testing if

N (∆∗, C − σ2
∆∗) + V (C)

cor > 0 (18)
approximates the exact full data test (5).

As in Section 3.2, the approximations used for arriving at the test (18) imply that the stationary
distribution of the chain need not be the exact posterior. However, we can expect to stay close to
the true posterior when the approximations are good, since the result only changes if the binary
accept-reject decision is affected. This is exemplified by the testing in Section 4 (see also Seita et al.
2017). The quality of the first approximation in (17) depends on the batch size b, which should not
be too small. As for the second error source, as already noted in Section 3.2 we markedly improve
on this with the GMM based approximation, and the resulting error is typically very small (see
Supplement). In some cases there are known theoretical upper bounds for the total error w.r.t. the
true posterior. These bounds are of limited practical value since they rely on assumptions that can be
hard to meet in general, and we therefore defer them to the Supplement.

For privacy, similarly as in Section 3.2, in (18) we need to access the data only for calculating
∆∗ + Vnc. Thus, it suffices to privately release a sample from NS = N (∆∗x, C − s2

∆∗x
), where

s2
∆∗x

denotes the sample variance when sampling from dataset x, i.e., we need to bound the Rényi
divergence between NS and NS′ . We use noise variance C = 2 in the following analysis.

Next, we will state our main theorem giving an explicit bound that can be used for calculating the
privacy loss for a single MCMC iteration with subsampling:
Theorem 2. Assuming

|log p(xi|θ′)− log p(xi|θ)| ≤
√
b

N
, (19)

α <
b

5
, (20)

where b is the size of the minibatch S and N is the dataset size, releasing a sample from NS satisfies
(α, ε)-RDP with

ε =
5

2b
+

1

2(α− 1)
ln

2b

b− 5α
+

2α

b− 5α
. (21)

Proof. The idea of the proof is straightforward: we need to find an upper bound for each of the terms
in Lemma 1, which can be done using standard techniques. Note that for C = 2, (19) implies that the
variance assumption (15) holds. See Supplement for the full derivation.

Using the composition [Mironov, 2017] and subsampling amplification [Wang et al., 2019] properties
of Rényi DP (see Supplement), we immediately get the following:
Corollary 2. Releasing a chain of T subsampled MCMC iterations with sampling ratio q, each
satisfying (α, ε(α))-RDP with ε(α) from Theorem 2, is (α, Tε′)-RDP with

ε′ =
1

α− 1
log
(

1 + q2

(
α

2

)
min{4(eε(2) − 1), 2eε(2)}+ 2

α∑

j=3

qj
(
α

j

)
e(j−1)ε(j)

)
. (22)

Figures 1(a) and 1(b) illustrate how changing the parameters q and T in Corollary 2 will affect the
privacy budget of DP MCMC.

Similarly as in the full data case in Section 3.2, we can satisfy the condition (19) with sufficiently
smooth likelihoods or by clipping. Figure 1(c) shows how frequently we need to clip the log-
likelihood ratios to maintain the bound in (19) as a function of proposal variance using a Gaussian
mixture model problem defined in Section 4. Using smaller proposal variance will result in smaller
changes in the log-likelihoods between the previous and the proposed parameter values, which entails
fewer clipped values.

However, the bound in (19) gets tighter with increasing N . To counterbalance this, either the
proposals need to be closer to the current value (assuming suitably smooth log-likelihood), resulting
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Figure 1: Parameter effects. Calculating total privacy budget from Corollary 2 for different dataset
sizes: in Figure 1(a) as a function of subsampling ratio, and in Figure 1(b) as a function of number of
iterations. Figure 1(c) shows the proportion of clipped log-likelihood ratios as a function of proposal
variance for the GMM example detailed in Section 4.

in a slower mixing chain, or b needs to increase, affecting privacy amplification. For very large N we
would therefore like to temper the log-likelihood ratios in a way that we could use sufficiently small
batches to benefit from privacy amplification, while still preserving sufficient amount of information
from the likelihoods and reasonable mixing properties. Using the c-posterior discussed in Section 2.3
with parameter β s.t. N0 = Nβ/(β +N), instead of condition (19) we then require

|log p(xi|θ′)− log p(xi|θ)| ≤
√
b

N0
, (23)

which does not depend on N.

4 Experiments

In order to demonstrate our proposed method in practice, we use a simple 2-dimensional Gaussian
mixture model2, that has been used by Welling and Teh [2011] and Seita et al. [2017] in the non-private
setting:

θj ∼ N (0, σ2
j , ), j = 1, 2 (24)

xi ∼ 0.5 · N (θ1, σ
2
x) + 0.5 · N (θ1 + θ2, σ

2
x), (25)

where σ2
1 = 10, σ2

2 = 1, σ2
x = 2. For the observed data, we use fixed parameter values θ = (0, 1).

Following Seita et al. [2017], we generate 106 samples from the model to use as training data. We
use b = 1000 for the minibatches, and adjust the temperature of the chain s.t. N0 = 100 in (23). This
corresponds to the temperature used by Seita et al. [2017] in their non-private test.

If we have absolutely no idea of a good initial range for the parameter values, especially in higher
dimensions the chain might waste the privacy budget in moving towards areas with higher posterior
probability. In such cases we might want to initialise the chain in at least somewhat reasonable
location, which will cost additional privacy. To simulate this effect, we use the differentially private
variational inference (DPVI) introduced by Jälkö et al. [2017] with a small privacy budget (0.22, 10−6)
to find a rough estimate for the initial location.

As shown in Figure 2, the samples from the tempered chain with DP are nearly indistinguishable
from the samples drawn from the non-private tempered chain. We also compared our method against
DP stochastic gradient Langevin dynamics (DP SGLD) method of Li et al. [2019]. Figure 3 illustrates
how the accuracy is affected by privacy. Posterior means and variances are computed from the first t
iterations of the private chain alongside the privacy cost ε, which increases with t. The baseline is
given by a non-private chain after 40000 iterations. The plots show the mean and the standard error
of the mean over 20 runs of 20 000 iterations with DP MCMC and 6 000 000 with DP SGLD. The DP
MCMC method was burned in for 1 000 iterations and DP SGLD for 100 000 iterations.

2The code for running all the experiments is avalaible in https://github.com/DPBayes/
DP-MCMC-NeurIPS2019.
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Figure 2: Results for the GMM experiment with tempered likelihoods: 2(a) shows 40000 samples
from the chain without privacy and 2(b) 20000 samples with privacy. The results with strict privacy
are very close to the non-private results.
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Figure 3: Intermediate private posterior statistics from DP SGLD and DP MCMC compared against
the baseline given by a non-private chain after 40000 iterations. Lines showing the mean error
between 20 runs of the algorithm with errorbars illustrating the standard error of the mean between
the runs. DP SGDL converges quickly towards the posterior mean, but does not properly capture
posterior variance.
5 Related work

Bayesian posterior sampling under DP has been studied using several different approaches. Recently
Yıldırım and Ermiş [2019] proposed a method for drawing samples from exact posterior under DP
using a modified MH algorithm. However their solution does not include subsampling and thus
suffers the computational cost of the full likelihood. Dimitrakakis et al. [2014] note that drawing
a single sample from the posterior distribution of a model where the log-likelihood is Lipschitz or
bounded yields a DP guarantee. The bound on ε can be strengthened by tempering the posterior by
raising the likelihood to a power τ ∈ (0, 1) to obtain the tempered posterior

πτ (θ) ∝ p(θ)p(x | θ)τ . (26)

The same principle is discussed and extended by Wang et al. [2015], Zhang et al. [2016] and
Dimitrakakis et al. [2017] in the classical DP setting and by Geumlek et al. [2017] in the RDP setting.
Wang et al. [2015] dub this the “one posterior sample” (OPS) mechanism. The main limitation of
all these methods is that the privacy guarantee is conditional on sampling from the exact posterior,
which is in most realistic cases impossible to verify.

The other most widely used approach for DP Bayesian inference is perturbation of sufficient statistics
of an exponential family model using the Laplace mechanism. This straightforward application of the
Laplace mechanism was mentioned at least by Dwork and Smith [2009] and has been widely applied
since by several authors [e.g. Zhang et al., 2016, Foulds et al., 2016, Park et al., 2016, Honkela
et al., 2018, Bernstein and Sheldon, 2018]. In particular, Foulds et al. [2016] show that the sufficient
statistics perturbation is more efficient than OPS for models where both are applicable. Furthermore,
these methods can provide an unconditional privacy guarantee. Many of the early methods ignore the
Laplace noise injected for DP in the inference, leading to potentially biased inference results. This
weakness is addressed by Bernstein and Sheldon [2018], who include the uncertainty arising from
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the injected noise in the modelling, which improves especially the accuracy of posterior variances for
models where this can be done.

MCMC methods that use gradient information such as Hamiltonian Monte Carlo (HMC) and various
stochastic gradient MCMC methods have become popular recently. DP variants of these were first
proposed by Wang et al. [2015] and later refined by Li et al. [2019] to make use of the moments
accountant [Abadi et al., 2016]. The form of the privacy guarantee for these methods is similar to
that of our method: there is an unconditional guarantee for models with a differentiable Lipschitz
log-likelihood that weakens as more iterations are taken. Because of the use of the gradients, these
methods are limited to differentiable models and cannot be applied to e.g. models with discrete
variables.

Before Seita et al. [2017], the problem of MCMC without using the full data has been considered
by many authors (see Bardenet et al. 2017 for a recent literature survey). The methods most closely
related to ours are the ones by Korattikara et al. [2014] and Bardenet et al. [2014]. From our
perspective, the main problem with these approaches is the adaptive batch size: the algorithms may
regularly need to use all observations on a single iteration [Seita et al., 2017], which clashes with
privacy amplification. Bardenet et al. [2017] have more recently proposed an improved version of
their previous technique alleviating the problem, but the batch sizes can still be large for privacy
amplification.

6 Discussion

While gradient-based samplers such as HMC are clearly dominant in the non-DP case, it is unclear
how useful they will be under DP. Straightforward stochastic gradient methods such as stochastic
gradient Langevin dynamics (SGLD) can be fast in initial convergence to a high posterior density
region, but it is not clear if they can explore that region more efficiently. We can see this in Figure 3:
the gradient adjusted method rapidly converges close to posterior mean, but the posterior variance is
not captured. HMC does have a clear advantage at exploration, but Betancourt [2015] demonstrates
that HMC is very sensitive to having accurate gradients and therefore a naive DP HMC is unlikely to
perform well. We believe that using a gradient-based method such as DP variational inference [Jälkö
et al., 2017] as an initiasation for the proposed method can yield overall a very efficient sampler that
can take advantage of the gradients in the initial convergence and of MCMC in obtaining accurate
posterior variances. Further work in benchmarking different approaches over a number of models is
needed, but it is beyond the scope of this work.

The proposed method allows for structurally new kind of assumptions to guarantee privacy through
forcing bounds on the proposal instead of or in addition to the likelihood. This opens the door for a
lot of optimisation in the design of the proposal. It is not obvious how the proposal should be selected
in order to maximise the amount of useful information obtained about the posterior under the given
privacy budget, when one has to balance between sampler acceptance rate and autocorrelation as well
as privacy. We leave this interesting question for future work.
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Supplement to Differentially Private Markov Chain
Monte Carlo

May 23, 2019

1 Useful differential privacy results

Proposition 1. A composition of two RDP algorithmsM1,M2 with RDP guarantees (α, ε1)
and (α, ε2), is (α, ε1 + ε2)-RDP.

Proof. See Mironov [2017, Proposition 1] .

The next result follows immediately from Proposition 1.

Corollary 1. Releasing a result from a T -fold composition of a (α, ε)-RDP query is (α, T ε)-
RDP.

The following Proposition states the privacy amplification via subsampling result of Wang et al.
[2019].

Proposition 2. A randomised algorithmM which accesses the whole dataset x only through
subset S of the dataset and satisfies (α, ε)-RDP w.r.t. to S, is (α, ε′)-RDP with

ε′ ≤ 1

α− 1
log
(

1 + q2

(
α

2

)
·min

{
4(eε(2) − 1), eε(2) min

{
2, (eε(∞)−1)2

}}

+
α∑

j=3

qj
(
α

j

)
e(j−1)ε(j) min

{
2, (eε(∞) − 1)j

})
,

where q = |S|/|x|, and α ≥ 2 is an integer, and ε(∞) = limj→∞ ε(j).

Proof. See Wang et al. [2019, Theorem 10] .

Finally, we can convert RDP privacy guarantees back to (ε, δ)-DP guarantees using the follow-
ing proposition.

Proposition 3. An (α, ε)-RDP algorithmM also satisfies (ε′, δ)-DP for all 0 < δ < 1 with

ε′ = ε+
log(1/δ)

α− 1
. (1)

Proof. See Mironov [2017, Proposition 3] .
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2 Proof of main text’s Theorem 1

Denote the maximally different adjacent datasets by x1,x2. The mechanism releases a sam-
ple from N1 = N (∆1, C), and N2 = N (∆2, C), where ∆1,∆2 are calculated with x1,x2,
respectively.

We want to show that

Dα(N1||N2) = log
σ1

σ2

+
1

2(α− 1)
log

σ2
2

ασ2
2 + (1− α)σ2

1

+
α

2

(µ1 − µ2)2

ασ2
2 + (1− α)σ2

1

(2)

≤ 2αB2

C
(3)

assuming that either

| log p(xi|θ′)− log p(xi|θ)| < B ∀xi, θ, θ′ (4)

or

| log p(xi|θ)− log p(xj|θ)| < B, ∀xi, xj, θ. (5)

Proof. W.l.o.g., we can assume that the differing element between x1 and x2 is the final one,
so x1,i = x2,i, i = 1, . . . , N − 1.

Since σ2
1 = σ2

2 = C, we immediately have

Dα(N1||N2) = log
σ1

σ2

+
1

2(α− 1)
log

σ2
2

ασ2
2 + (1− α)σ2

1

+
α

2

(µ1 − µ2)2

ασ2
2 + (1− α)σ2

1

(6)

=
α

2C
(µ1 − µ2)2 (7)

=
α

2C
[
N∑

i=1

log
p(x1,i|θ′)
p(x1,i|θ)

−
N∑

i=1

log
p(x2,i|θ′)
p(x2,i|θ)

]2 (8)

=
α

2C

∣∣∣∣log
p(x1,N |θ′)
p(x1,N |θ)

− log
p(x2,N |θ′)
p(x2,N |θ)

∣∣∣∣
2

. (9)

Assuming (4), and continuing from (9)

α

2C

∣∣∣∣log
p(x1,N |θ′)
p(x1,N |θ)

− log
p(x2,N |θ′)
p(x2,N |θ)

∣∣∣∣
2

(10)

≤ α

2C

( ∣∣∣∣log
p(x1,N |θ′)
p(x1,N |θ)

∣∣∣∣+

∣∣∣∣log
p(x2,N |θ′)
p(x2,N |θ)

∣∣∣∣
)2

(11)

≤ α

2C
|2B|2 (12)

≤ 2αB2

C
. (13)
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On the other hand, assuming (5), and again continuing from (9) gives

α

2C

∣∣∣∣log
p(x1,N |θ′)
p(x1,N |θ)

− log
p(x2,N |θ′)
p(x2,N |θ)

∣∣∣∣
2

(14)

=
α

2C

∣∣∣∣log
p(x1,N |θ′)
p(x2,N |θ′)

− log
p(x1,N |θ)
p(x2,N |θ)

∣∣∣∣
2

(15)

≤ α

2C

( ∣∣∣∣log
p(x1,N |θ′)
p(x2,N |θ′)

∣∣∣∣+

∣∣∣∣log
p(x1,N |θ)
p(x2,N |θ)

∣∣∣∣
)2

(16)

≤ α

2C
|2B|2 (17)

≤ 2αB2

C
, (18)

which is the same bound as before.

3 Proof of main text’s Theorem 2

The Barker test amounts to checking the following condition:

∆∗ + Vnc + V (2)
cor > 0, where (19)

∆∗ =
N

b

∑

i∈S
log

p(xi|θ′)
p(xi|θ)︸ ︷︷ ︸
ri

+ log
q(θ|θ′)p(θ)
q(θ′|θ)p(θ′) , (20)

Vnc ∼ N (0, 2− s2
∆∗), (21)

N is the full dataset size, b is the batch size, s2
∆∗ is the sample variance, and summation over S

here means summing over the elements in the batch, indexed by the element number i.

In other words, with a slight abuse of notation and writing capital letters for random variables
the mechanism releases a sample from

N (N r̄, 2− Var(
N

b

∑

i∈S
Ri)) =N (N r̄, 2− N2

b2

∑

i∈S
Var(R)) (22)

≈N (N r̄, 2− N2

b
Var(r)), (23)

where (22) holds becauseRi are conditionally iid with a common distribution written asR, and
Var(r) means the sample variance estimated from the actual iid sample ri, i ∈ S we have, i.e.,
a vector of length b.

Assume that

|ri| ≤
√
b

N
∆
= c,∀ i and (24)

α <
b

5
. (25)
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We want to show that

Dα(N1 || N2) = ln
σ2

σ1︸ ︷︷ ︸
f1

+
1

2(α− 1)
ln

σ2
2

ασ2
2 + (1− α)σ2

1︸ ︷︷ ︸
f2

+
α

2

(µ1 − µ2)2

ασ2
2 + (1− α)σ2

1︸ ︷︷ ︸
f3

(26)

≤ 5

2b
+

1

2(α− 1)
ln

2b

b− 5α
+

2α

b− 5α
. (27)

Proof. As a first step, we have

0 < Var(r) =E(r2)− E(r)2 ≤ E(r2) = 1/b
∑

i∈S
r2
i ≤

b

N2
(28)

⇒ 2− N2

b
Var(r) ∈ [1, 2), (29)

where the last inequality in (28) follows from (24).

Denote the maximally different adjacent datasets as r1, r2 that produce draws from N1 and
N2 respectively, parameterised with means and variances as in (23). W.l.o.g., we can assume
that the differing element is the final one, so we have r1,i = r2,i, i = 1, . . . , b − 1. We write
i ∈ S \ xN to index a summation over the batch omitting the differing element.

The proof proceeds by bounding each of the terms f1, f2, f3 in (26).

To start with, f1 can be bounded as follows:

f1 =
1

2
ln
σ2

2

σ2
1

≤ 1

2
| ln σ

2
2

σ2
1

| ≤ 1

2
|σ2

2 − σ2
1| (30)

=
1

2
|2− N2

b
Var(r2)− (2− N2

b
Var(r1))| (31)

=
N2

2b
|1/b

∑

i∈S
r2

1,i − (r̄1)2 − 1/b
∑

i∈S
r2

2,i + (r̄2)2| (32)

=
N2

2b
|1/b(r2

1,b − r2
2,b) + (1/b

∑

i∈S
r2,i)

2 − (1/b
∑

i∈S
r1,i)

2| (33)

=
N2

2b2
|(r2

1,b − r2
2,b) + 1/b(r2

2,b − r2
1,b + 2(

∑

i∈S\xN

r2,i · r2,b −
∑

i∈S\xN

r1,i · r1,b))| (34)

=
N2

2b2
|b− 1

b
(r2

1,b − r2
2,b)−

2

b
(
∑

i∈S\xN

ri)(r1,b − r2,b)| (35)

=
N2

2b3
|(b− 1)(r2

1,b − r2
2,b)− 2(

∑

i∈S\xN

ri)(r1,b − r2,b)| (36)

≤ N2

2b3
[(b− 1)(c2) + 2(b− 1)c(2c)] (37)

=
N2

2b3
(b− 1)5c2 (38)

≤ 5

2b
, (39)

where the final inequality in (30) holds because we have (29), and (37) as well as the final
bound in (39) follow from (24).
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For the common denominator term ασ2
2 + (1−α)σ2

1 in f2 and f3, we can first repeat essentially
the previous calculation to get

σ2
2 − σ2

1 ≥ −|σ2
2 − σ2

1| (40)
= · · · (41)

= −N
2

b3
|(b− 1)(r2

1,b − r2
2,b)− 2(

∑

i∈S\xN

ri)(r1,b − r2,b)| (42)

≥ −N
2

b3
[(b− 1)c2 + 2(b− 1)c(2c)] (43)

= −N
2

b3
(b− 1)5c2 (44)

≥ −5

b
. (45)

Combining (45) and (29) we get

ασ2
2 + (1− α)σ2

1 = σ2
1 + α(σ2

2 − σ2
1) (46)

≥ 1− α5

b
> 0, (47)

where the final inequality follows from (25).

For the numerator in f3 we have

(µ1 − µ2)2 =

(
N

b

∑

i∈S
r1,i −

N

b

∑

i∈S
r2,i

)2

(48)

=

(
N

b
(r1,b − r2,b)

)2

(49)

≤
(

2Nc

b

)2

(50)

≤ 4

b
. (51)

Finally, using the derived bounds in (39), (47), and (51) with the fact that σ2
2 ≤ 2 from (29), the

bound for the Rényi divergence (26) becomes

Dα(N1 || N2) ≤ 5

2b
+

1

2(α− 1)
(ln 2− ln(1− 5α

b
)) +

α

2

4

b

1

1− 5α
b

(52)

≤ 5

2b
+

1

2(α− 1)
ln

2b

b− 5α
+

2α

b− 5α
. (53)

If we instead use the tempered log-likelihoods with temperature τ = N0

N
, the effect is to replace

ri by τri. The same proof then holds when instead of N we write N0.

4 Bounding the approximations errors

As mentioned in the main text, with finite data and b < N the acceptance test (18) in the main
text is an approximation. For this case, there are some known theoretical bounds for the errors
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induced. The general idea with the following Theorems is that by bounding the errors induced
by each approximation step, we can find a bound on the error in the stationary distribution of
the approximate chain w.r.t. the exact posterior. The references in this Section mostly point to
the main text. The exceptions are obvious from the context.

First, Theorem 1 gives an upper bound for the error due to ∆∗ having approximately normal
instead of exactly normal distribution as in (20):

Theorem 1.
sup
y
|P(∆∗ < y)− Φ(

y −∆

s∆∗
)| ≤ 6.4E[|Z|3] + 2E[|Z|]√

b
,

where Z = N(log p(X|θ′)
p(X|θ) − E[log p(X|θ′)

p(X|θ) ]).

Proof. See [Seita et al., 2017, Cor. 1] .

Next, we have a bound for the error in the test quantity (18) relative to the exact test (5) given in
Theorem 2. The original proof [Seita et al., 2017, Cor. 2] assumes that C = 1 and (16) holds
exactly. We present a slightly modified proof that holds for any C and also accounts for the
error due to having only an approximate correction to the logistic distribution. We start with a
helpful Lemma before the actual modified Theorem.

Lemma 1. Let P (x) and Q(x) be two CDFs satisfying supx |P (x)−Q(x)| ≤ ε with x in some
real range. Let R(y) be the density of another random variable Y . Let P ′ be the convolution
P ∗R andQ′ be the convolutionQ∗R. Then P ′(z) (resp. Q′(z)) is the CDF of sum Z = X+Y
of independent random variables X with CDF P (x) (resp. Q(x)) and Y with density R(y).
Then

sup
x
|P ′(x)−Q′(x)| ≤ ε.

Proof. See [Seita et al., 2017, Lemma 4] .

Theorem 2. If supy |P(∆∗ < y) − Φ(y−∆
s∆∗

)| ≤ ε1(θ′, θ, b) and supy |S ′(y) − S(y)| ≤ ε2, then

supy |P(∆∗ + Vnc + V
(C)
cor < y) − S(y − ∆)| ≤ ε1(θ′, θ, b) + ε2, where s∆∗ is the sample

standard deviation of ∆∗, S ′ is the cdf of the approximate logistic distribution produced by
N (0, C) + V

(C)
cor , and S is the exact logistic function.

Proof. As in the original proof [Seita et al., 2017, Cor. 2] the main idea is to use Lemma 1
two times. First, take P (y) = P(∆∗ < y), Q(y) = Φ(y−∆

s∆∗
) and convolve with Vnc which has

density φ( x√
C−s2

∆∗ )
). For the second step, take the results P ′(y) = P(∆∗ + Vnc < y), Q′(y) =

Φ(y−∆√
C

) and convolve with the density of V (C)
cor to get P ′′(y) = P(∆∗+Vnc+V

(C)
cor < y), Q′′(y) =

S ′(y−∆). By Lemma 1, both convolutions preserve the error bound ε1(θ′, θ, b), and we there-
fore have

sup
y
|P(∆∗ + Vnc + V (C)

cor < y)− S(y −∆)| (54)

= sup
y
|P(∆∗ + Vnc + V (C)

cor < y)− S ′(y −∆) + S ′(y −∆)− S(y −∆)| (55)

≤ sup
y
|P(∆∗ + Vnc + V (C)

cor < y)− S ′(y −∆)|+ sup
y
|S ′(y)− S(y)| (56)

≤ ε1(θ′, θ, b) + ε2, (57)

where (56) follows from the triangle inequality.
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Finally, a bound on the test error implies a bound for the stationary distribution of the Markov
chain relative to the true posterior, given in Theorem 3. Writing dv(P,Q) for the total variation
distance between distributions P and Q, T0 for the transition kernel of the exact Markov chain,
S0 for the exact posterior, and Sε for the stationary distribution of the approximate transition
kernel where ε is the error in the acceptance test, we have:

Theorem 3. If T0 satisfies the contraction condition dv(PT0,S0) < ηdv(P,S0) for some con-
stant η ∈ [0, 1) and all probability distributions P , then

dv(S0,Sε) ≤
ε

1− η ,

where ε is the bound on the error in the acceptance test.

Proof. See [Korattikara et al., 2014, Theorem 1] .

Generally, especially the contraction condition in Theorem 3 can be hard to meet: it can be
shown to hold e.g. for some Gibbs samplers (see e.g. Brémaud 1999, Theorem 6.1) but it is not
usually valid for an arbitrary model, and even checking the condition might not be trivial.

5 Numerical approximation of the correction distribution

As noted in the main text, we need to find an approximate distribution V (C)
cor s.t.

Vlog
d
= N (0, C) + V (C)

cor , (58)

where Vlog has a standard logistic distribution. The approximation method of Seita et al. [2017]
casts the problem into a ridge regression problem, which can be solved effectively. However,
nothing constrains the resulting function from having negative values. In order to use it as
an approximate pdf, Seita et al. [2017] set these to zeroes and note that as long as C is small
enough, such values are rare and hence do not affect the solution much. In practice, their
solution seems to work very well with small values of C, e.g. when C ≤ 1.

Since we want to use larger C for the privacy, we propose to approximate V (C)
cor with a Gaussian

mixture model (GMM). Since the result is always a valid pdf, the problem of negative values
does not arise.

To find the correction pdf, denote the density of the GMM approximation with K components
by f̃cor, the GMM component parameters by πk, µk and σk, and the standard normal density by
φ. We have

flog(x) = (fnorm ∗ fcor)(x) ' (fnorm ∗ f̃cor)(x)

=

∫

R
fnorm(x)f̃cor(x− t)dt

=

∫

R
φ(

x√
C

)[
K∑

k=1

πkφ(
x− t− µk

σk
)]dt

=
K∑

k=1

πkφ(
x− µk√
C + σ2

k

) = f̃
(C)
log (x; πk, µk, σk, k = 1, . . . , K)
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As the logistic pdf is symmetric around zero, we require our GMM approximation to be sym-
metric as well. We achieve this by creating a counterpart for each mixture component with an
opposite sign mean and identical variance and weight. To construct the approximation on some
interval [−a, a] ⊂ R, we discretise the interval into n points, and fit the GMM by minimising
the loss function

L(π, µ, σ) = ‖flog − f̃ (C)
log ‖2 (59)

calculated over the discretisation. Since GMM is a generative model, sampling from the opti-
mised approximation is easy.

Figure 1 shows the approximation error maxy |S ′(y) − S(y)|, where S ′ is the approximate lo-
gistic ecdf and S the exact logistic cdf, due to Ṽcor using the ridge regression solution proposed
by Seita et al. [2017] and the GMM. The error measure is the same as in Theorem 2 in the
Supplement. Empirically, as shown in the Figure, we can have noticeably better approximation
especially with larger C values.

1.0 1.5 1.75 2.0
C

10 3

10 2

10 1

m
ax

|S
'(y

)-S
(y

)|

Vcor + N(0, C) estimated with 105 samples
Ridge regression
GMM

Approximation error due to Vcor

Figure 1: Approximation error due to Ṽcor with error bars showing the standard error of the mean
calculated from 20 runs. With the ridge regression solution proposed by Seita et al. [2017] the error
increases quickly when C > 1. Using the GMM approximation we can achieve significantly smaller
error with C = 2.

Figure 2 shows the two approximations with increasing C. When the negative values in the
ridge regression solution are projected to zeroes, the variance of Vcor increases and the resulting
approximate Ṽlog has variance much larger than the actual π2/3 it should have. This also shows
in the resulting approximation. Figure 3 shows the empirical cdf for both approximations and
for the true logistic distribution, and the absolute distance between the approximations S ′ and
the true logistic cdf S.

To calculate the ridge regression solution for [−10, 10], we use the original code of Seita et al.
[2017] with parameter values n = 4000, λ = 10.0 used in the original paper. The problems with
larger C values persisted with other parameter settings we tested. Note that the discretisation
granularity parameter n used in the two methods are not directly comparable.

To fit the GMMs with K components, we take the interval [−10, 10] with n = 1000 points
for calculating the loss function, and run 20000 optimisation iterations with PyTorch [Paszke
et al., 2017]. We use Adam optimiser [Kingma and Ba, 2014] with learning rate η = 0.01 and
otherwise default settings. The approximation is forced to be symmetric about zero by adding
mirrored components: for the kth component we add a copy but set the mean as −µk, and set
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C=1.0

C=1.501

C=1.75

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

C=1.999

Seita et al. approximate correction distribution log-pdfs with varying C
n=4000, =10.0

(a) Ridge regression results

C=1.0

C=1.5

C=1.75

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

C=2.0

GMM approximate correction distribution log-pdfs with varying C
n=1000

(b) GMM results

Figure 2: Approximate correction distribution log-densities with varying C values. Figure 2(a) shows
the results for the ridge regression solution used by Seita et al.: as C increases, the amount of negative
values that are projected to zeroes, which show as gaps in the log-pdf, increases markedly. Figure 2(b)
shows corresponding results for our GMM solution: the approximation is always a valid pdf over R.

the weights as πk/2 for both, i.e., use the mean of the original and the mirrored component. We
use K = 50 in the test, which gives 100 components with mirroring.
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Abstract

Shuffle model of differential privacy is a novel distributed privacy model based on a
combination of local privacy mechanisms and a secure shuffler. It has been shown that
the additional randomisation provided by the shuffler improves privacy bounds compared
to the purely local mechanisms. Accounting tight bounds, however, is complicated by
the complexity brought by the shuffler. The recently proposed numerical techniques for
evaluating (ε, δ)-differential privacy guarantees have been shown to give tighter bounds than
commonly used methods for compositions of various complex mechanisms. In this paper,
we show how to utilise these numerical accountants for adaptive compositions of general
ε-LDP shufflers and for shufflers of k-randomised response mechanisms, including their
subsampled variants. This is enabled by an approximation that speeds up the evaluation of
the corresponding privacy loss distribution from O(n2) to O(n), where n is the number of
users, without noticeable change in the resulting δ(ε)-upper bounds. We also demonstrate
looseness of the existing bounds and methods found in the literature, improving previous
composition results for shufflers significantly.

1 Introduction

The shuffle model of differential privacy (DP) is a distributed privacy model which sits between the high trust–
high utility centralised DP, and the low trust–low utility local DP (LDP). In the shuffle model, the individual
results from local randomisers are only released through a secure shuffler. This additional randomisation
leads to “amplification by shuffling”, resulting in better privacy bounds against adversaries without access
to the unshuffled local results.

We consider computing privacy bounds for both single and composite shuffle protocols, where by composite
protocol we mean a protocol, where the subsequent user-wise local randomisers depend on the same local
datasets and possibly on the previous output of the shuffler, and at each round the results from the local
randomisers are independently shuffled. Moreover, using the analysis by Feldman et al. (2023), we provide
bounds in the case the subsequent local randomisers are allowed to depend adaptively on the output of the
previous ones.

In this paper we show how numerical accounting (Koskela et al., 2020; 2021; Gopi et al., 2021) can be
employed for privacy analysis of both single and composite shuffle DP mechanisms. We demonstrate that
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thus obtained bounds can be up to orders of magnitudes tighter than the existing bounds from the literature.
We also evaluate how significantly adversaries with varying capabilities differ in terms of the resulting privacy
bounds using the k-randomised response mechanism. For conciseness, most of the proofs are given in the
Appendix.

1.1 Related work

DP was originally defined in the central model assuming a trusted aggregator by Dwork et al. (2006), while
the fully distributed LDP was formally introduced and analysed by Kasiviswanathan et al. (2011). Closely
related to the shuffle model of DP, Bittau et al. (2017) proposed the Encode, Shuffle, Analyze framework for
distributed learning, which uses the idea of secure shuffler for enhancing privacy. The shuffle model of DP
was formally defined by Cheu et al. (2019), who also provided the first separation result showing that the
shuffle model is strictly between the central and the local models of DP. Another direction initiated by Cheu
et al. (2019) and continued, e.g., by Balle et al. (2020b); Ghazi et al. (2021) has established a separation
between single- and multi-message shuffle protocols.

There exists several papers on privacy amplification by shuffling, some of which are central to this paper.
Erlingsson et al. (2019) showed that the introduction of a secure shuffler amplifies the privacy guarantees
against an adversary, who is not able to access the outputs from the local randomisers but only sees the
shuffled output. Balle et al. (2019) improved the amplification results and introduced the idea of privacy
blanket, which we also utilise in our analysis of k-randomised response. Feldman et al. (2021) used a related
idea of hiding in the crowd to improve on the previous results, and their analysis was further improved
in (Feldman et al., 2023). Girgis et al. (2021) generalised shuffling amplification further to scenarios with
composite protocols and parties with more than one local sample under simultaneous communication and
privacy restrictions. We use the improved results of Feldman et al. (2023) in the analysis of general LDP
mechanisms, and compare our bounds with theirs in Section 3.3. We also calculate privacy bounds in the
setting considered by Girgis et al. (2021), namely in the case where a subset of users sending contributions to
the shufflers are sampled randomly. This can be seen as a subsampled mechanism and we are able to combine
the analysis of Feldman et al. (2023), the privacy loss distribution related subsampling results of Zhu et al.
(2022) and FFT accounting to obtain tighter (ε, δ)-bounds than Girgis et al. (2021), as shown in Section 3.4.

2 Background: numerical privacy accounting

Before analysing the shuffled mechanisms we introduce some required theory and notations. In particular,
we use the privacy loss distribution formalism, which is based on finding the so-called dominating pairs of
distributions for the given mechanisms. For more detailed presentations of the theory, we refer to Koskela
et al. (2021); Gopi et al. (2021); Zhu et al. (2022).

2.1 Differential privacy and privacy loss distribution

An input dataset containing n data points is denoted as X = (x1, . . . , xn) ∈ Xn, where xi ∈ X , 1 ≤ i ≤ n.
We say X,X ′ ∈ Xn are neighbours if we get one by substituting one element in the other (denoted X ∼ X ′).
Definition 1. Let ε > 0 and δ ∈ [0, 1]. Let P and Q be two random variables taking values in the same
measurable space O. We say that P and Q are (ε, δ)-indistinguishable, denoted P '(ε,δ) Q, if for every
measurable set E ⊂ O we have

Pr(P ∈ E) ≤ eεPr(Q ∈ E) + δ, Pr(Q ∈ E) ≤ eεPr(P ∈ E) + δ.

Definition 2. Let ε > 0 and δ ∈ [0, 1]. Mechanism M : Xn → O is (ε, δ)-DP if for every X ∼ X ′:
M(X) '(ε,δ) M(X ′). We callM tightly (ε, δ)-DP, if there does not exist δ′ < δ such thatM is (ε, δ′)-DP.

When the data are distributed among several parties, and the local datasets are only accessed via purely local
DP mechanisms, we say that the mechanisms guarantee local DP (LDP) and call the local DP mechanisms
local randomisers (Kasiviswanathan et al., 2011).
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We rely on the results of Zhu et al. (2022) and characterise (ε, δ)-DP bounds using the hockey-stick divergence,
which for α ≥ 0 is defined as

Hα(P ||Q) =
∫

[P (t)− α ·Q(t)]+ dt,

where for x ∈ R, x+ = max{0, x}. Using the hockey-stick divergence, by (Lemma 5, Zhu et al., 2022), tight
(ε, δ)-DP bounds can also be characterised as

δ(ε) = max
X∼X′

Heε(M(X)||M(X ′)).

We can generally find (ε, δ)-bounds by analysing dominating pairs of distributions:
Definition 3 (Zhu et al. 2022). A pair of distributions (P,Q) is a dominating pair of distributions for
mechanismM if for all α ≥ 0,

max
X∼X′

Hα(M(X)||M(X ′)) ≤ Hα(P ||Q).

Using dominating pairs of distributions, we can obtain δ(ε)-upper bounds for adaptive compositions:
Theorem 4 (Zhu et al. 2022). If (P,Q) dominates M and (P ′, Q′) dominates M′, then (P × P ′, Q ×Q′)
dominates the adaptive compositionM◦M′.

Having dominating pairs of distributions for each individual mechanism in a composition, the hockey-stick
divergence can be transformed into a more easily computable form by using the privacy loss random variables
(PRVs). PRV for a pair of distributions (P,Q) is defined as follows.
Definition 5. Let P (t) and Q(t) be probability density functions. We define the PRV ωP/Q as

ωP/Q = log P (t)
Q(t) , t ∼ P (t),

where t ∼ P (t) means that t is distributed according to P (t).

With a slight abuse of notation, we denote the probability density function of the random variable ωP/Q by
ωP/Q(t), and call it the privacy loss distribution (PLD).

The δ(ε)-bounds can be stated using the following representation that involves the PRV.
Theorem 6 (Gopi et al. 2021). We have:

Heε(P ||Q) = EωP/Q
[
1− eε−ωP/Q

]
+ , (2.1)

Moreover, if ωP/Q is a PRV for the pair of distributions (P,Q) and ωP ′/Q′ a PRV for the pair of distributions
(P ′, Q′), then the PRV for the pair of distributions (P × P ′, Q×Q′) is given by ωP/Q + ωP ′/Q′

By identifying dominating pairs of distributions for each mechanism in a composition and by formulating the
δ(ε)-bound via hockey-stick divergence as an integral of the form given in Equation 2.1, the numerical PLD
accountants (Koskela et al., 2021; Gopi et al., 2021) can be utilised for computing accurate δ(ε)-bounds.

We will also use the following subsampling amplification result (Proposition 30, Zhu et al., 2022), which
leads to a privacy profile for the composed mechanism M ◦ SSubset, where SSubset denotes a subsampling
procedure where, from an input of n entries, a fixed sized subset of q · n, 0 < q ≤ 1, entries is sampled
without replacement.
Lemma 7 (Zhu et al. 2022). Denote the subsampled mechanism M̃ := M ◦ SSubset. Suppose a pair of
distributions (P,Q) is a dominating pair of distributions for a mechanism M for all datasets of size q · n
under the ∼-neighbouring relation (i.e., the substitute relation), where q > 0 is the subsampling ratio (size
of the subset divided by n). Then, for all neighbouring datasets (under the ∼-neighbouring relation) X and
Y of size n,

Hα

(
M̃(X)||M̃(Y )

)
≤ Hα

(
q · P + (1− q) ·Q||Q

)
, for α ≥ 1,

Hα

(
M̃(X)||M̃(Y )

)
≤ Hα

(
P ||q ·Q+ (1− q) · P

)
, for 0 ≤ α < 1.

(2.2)

3



Published in Transactions on Machine Learning Research (03/2023)

Considering the assumptions of Lemma 7, if we define a function h : R≥0 → R

h(α) = max{Hα

(
q · P + (1− q) ·Q||Q

)
, Hα

(
P ||q ·Q+ (1− q) · P

)
}, (2.3)

we see that h(α) clearly defines a privacy profile: it is convex and has all the other required properties
of a privacy profile. Thus we can use an existing numerical method (Doroshenko et al., 2022, Algorithm
1) with the function h to obtain discrete-valued distributions P̃ and Q̃, that are a dominating pair for
M̃ =M◦ SSubset.
We remark that by (Theorem 10, Zhu et al., 2022), the two pairs of distributions on the right-hand side
of Equation 2.2 give dominating pairs for remove and add neighbouring relations of datasets in case the pair
(P,Q) is a dominating pair of distributions forM under remove and add neighbouring relations, respectively,
and can therefore be used to compute (ε, δ)-upper bounds in case of add/remove neighbouring relations of
datasets. Then, the computation is more straightforward since one can simply take the maximum of the
δ(ε)-values obtained under the remove and add neighbouring relations and therefore using the techniques
of Doroshenko et al. (2022) is not necessary. We focus on using the ∼-relation as the dominating pair (P,Q)
obtained using both the post-processing results of (Feldman et al., 2023) and using our analysis for the k-RR
local randomiser is a dominating pair under the ∼-relation. The ∼-relation is also behind the baseline bounds
by Girgis et al. (2021). We illustrate in Fig. 1 the accuracy of the numerical construction of (Doroshenko
et al., 2022, Algorithm 1) applied to the privacy profile given in Equation 2.3.

2.2 Numerical PLD accounting using FFT

In order to evaluate integrals of the form given in Equation 2.1, we use the Fast Fourier Transform (FFT)-
based method by Koskela et al. (2021) called the Fourier Accountant (FA). This means that each PLD is
truncated and placed on an equidistant numerical grid over an interval [−L,L], L > 0. The distributions
for the sums of the PRVs are given by convolutions of the individual PLDs and are evaluated using the FFT
algorithm. By a careful error analysis the error incurred by the numerical method can be bounded and an
upper δ(ε)-bound obtained. We note that alternatively, for accurately computing the integrals we could also
use the FFT-based method proposed by Gopi et al. (2021).

3 General shuffled ε0-LDP mechanisms

Feldman et al. (2023) consider general ε0-LDP local randomisers combined with a shuffler. The analysis
allows also sequential adaptive compositions of the user contributions before shuffling. The analysis is based
on decomposing individual LDP contributions to mixtures of data dependent part and noise, which leads to
finding (ε, δ)-bounds for the pair of 2-dimensional random variables (see Thm. 3.1 of Feldman et al., 2023)

P = (A+ ∆1, C −A+ ∆2), Q = (A+ ∆2, C −A+ ∆1), (3.1)

where for n ∈ N,

C ∼ Bin(n− 1, 2p), A ∼ Bin
(
C, 1

2
)
, ∆1 ∼ Bern (eε0p) and ∆2 ∼ Bin

(
1−∆1,

p
1−eε0p

)
, (3.2)

and p = 1
eε0 +1 . Intuitively, C denotes the number of other users whose mechanism outputs are

indistinguishable “clones” of the two differing users, with A denoting random split between these. Using
the following lemma, we can use the FFT-based numerical accountants to obtain accurate bounds also for
adaptive compositions of general ε0-LDP shuffling mechanisms:
Lemma 8. Let X and X ′ be neighbouring datasets and denote by As(X) and As(X ′) outputs of the shufflers
of adaptive ε0-LDP local randomisers (for a detailed description of As, see Thm. 3.1 by Feldman et al., 2023,
which uses the same notation). Then, for all α ≥ 0,

Hα(As(X)||As(X ′)) ≤ Hα(P ||Q),

where P and Q are given in Equation 3.1.
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Proof. By Thm. 3.1 of Feldman et al. (2023) there exists a post-processing algorithm Φ such that As(X)
is distributed identically to Φ(P ) and As(X ′) identically to Φ(Q). The claim follows then from the data-
processing inequality which holds for the hockey-stick divergence (Balle et al., 2020a).

Corollary 9. The pair of distributions (P,Q) given in Equation 3.1 is a dominating pair of distributions
for the shuffling mechanism As(X).

Furthermore, using Thm. 4, we can bound the δ(ε) of nc-wise adaptive composition of the shuffler As using
product distributions of P s and Qs:
Corollary 10. Denote Ancs (X, z0) = As(X,As(X, ...As(X, z0))) for some initial state z0. For all
neighbouring datasets X and X ′ and for all α ≥ 0,

Hα(Ancs (X)||Ancs (X ′)) ≤ Hα(P × . . .× P ||Q× . . .×Q), (3.3)

We remark that the case of heterogeneous adaptive compositions (e.g. varying n and ε0) can be handled
analogously using Thm. 4.

Thus, using the bound of Equation 3.3 for α = eε, we get upper bounds for adaptive compositions of general
shuffled ε0-LDP mechanisms with the Fourier accountant by finding the PLD for the distributions P,Q
(given in Equation 3.1). Note that even though the resulting (ε, δ)-bound is tight for P ’s and Q’s, it need
not be tight for a specific mechanism like the shuffled k-RR. The bound simply gives an upper bound for
any shuffled ε0-LDP mechanisms.

3.1 PLD for shuffled ε0-LDP mechanisms

To analyse compositions of general shuffled ε0-LDP mechanisms, we need to form the PLD ωP/Q determined
by P and Q of Equation 3.1. Denoting q = eε0p and q̃ = p

1−eε0p , p = 1
eε0 +1 , and writing out the randomness

of ∆1 and ∆2 as mixtures, we see that the random variables P and Q given in Equation 3.1 can be expressed
as

P = q · P0 + (1− q)q̃ · P1 + (1− q)(1− q̃) · P2, Q = (1− q)q̃ · P0 + q · P1 + (1− q)(1− q̃) · P2,

where
P0 ∼ (A+ 1, C −A), P1 ∼ (A,C −A+ 1), P2 = (A,C −A)

and A and C are as given in Equation 3.2. In the Appendix, we give the required expressions to determine
the discrete-valued PLD

ωP/Q(s) =
∑

a,b
P(P = (a, b)) · δs(a,b)(s), s(a,b) = log

(
P(P=(a,b))
P(Q=(a,b))

)
, (3.4)

where δs(·), s ∈ R, denotes the Dirac delta function centred at s, and similarly also for ωQ/P (s).

3.2 Lowering PLD computational complexity using Hoeffding’s inequality

The PLD of Equation 3.4 has O(n2) terms, which makes its naive evaluation overly expensive for a large
number of users n. Using an appropriate tail bound (Hoeffding) for the binomial distribution, we can truncate
part of the probability mass and add it directly to δ. More specifically, if each PLD ωi, 1 ≤ i ≤ nc, in an nc-
wise composition is approximated by a truncated distribution ω̃i such that the truncated probability masses
are τi ≥ 0, respectively, then δ(ε) = δ̃(ε) + δ(∞), where δ̃(ε) is the value of the integral in Equation 2.1
obtained with the truncated PLDs and δ(∞) = 1 − ∏i(1 − τi) ≤

∑
i τi, gives an upper bound for the

composition without truncations. Using the Hoeffding’s inequality we obtain an accurate approximation of
ωP/Q with only O(n) terms. We formalise this approximation as follows:
Lemma 11. Let the PLD ωP/Q be defined as in Equation 3.4 (Equation 3.1 gives P and Q which include
C ∼ Bin(n− 1, 2p) and A ∼ Bin

(
C, 1

2
)
) and let τ > 0. Consider the set

Sn = [max (0, (2p− cn)(n− 1)) ,min (n− 1, (2p+ cn)(n− 1))],
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where cn =
√

log(4/τ)
2(n−1) and the set

Si = [max
(
0, ( 1

2 − ci) · i
)
,min

(
n− 1, ( 1

2 + ci) · i
)
],

where ci =
√

log(4/τ)
2·i . Then, ω̃P/Q defined by

ω̃P/Q(s) =
∑

i∈Sn

∑

j∈Si
P(P = (j + 1, i− j)) · δsj+1,i−j (s), sa,b = log

(
P(P=(a,b))
P(Q=(a,b))

)
(3.5)

has O(n · log(4/τ)) terms and differs from ωP/Q at most by mass τ .

Proof. As A is conditioned on C, we first use a tail bound on C and then on A to reduce the number of
terms. Using Hoeffding’s inequality for C ∼ Bin(n− 1, 2p) states that for c > 0,

P
(
C ≤ (2p− c)(n− 1)

)
≤ exp

(
− 2(n− 1)c2),

P
(
C ≥ (2p+ c)(n− 1)

)
≤ exp

(
− 2(n− 1)c2).

Requiring that 2 · exp
(
−2(n− 1)c2) ≤ τ/2 gives the condition c ≥

√
log(4/τ)
2(n−1) and the expressions for cn

and Sn. Similarly, we use Hoeffding’s inequality for A ∼ Bin(C, 1
2 ) and get expressions for ci and Si. The

total neglected mass is at most τ/2 + τ/2 = τ . For the number of terms, we see that Sn contains at most
2cn(n − 1) =

√
n− 1

√
2 · log(4/τ) terms and for each i, and Si contains at most 2cii =

√
i
√

2 · log(4/τ) ≤√
n− 1

√
2 · log(4/τ) terms. Thus ω̃P/Q has at most O(n · log(4/τ)) terms. We get the form of Equation 3.5

by an appropriate change of variables.

When evaluating ω̃P/Q, we require that the neglected mass is smaller than some prescribed tolerance τ (e.g.
τ = 10−12). When computing guarantees for compositions, the cost of FFT for evaluating the convolutions
dominates the rest of the computation.

3.3 Experimental comparison to RDP

Figure 1 shows a comparison between the PLD and RDP applied to the pair of distributions P and Q given
in Equation 3.1. RDP bounds for composition are computed using standard composition results (Mironov,
2012) and the RDP bounds are converted to DP bounds using the conversion formula given by Canonne et al.
(2020). Naive evaluation of RDP-values is O(n2) computation. We heuristically speed up RDP evaluation
using the Hoeffding inequality (Lemma 11) and check that increasing the accuracy does not change the
results.

3.4 Experimental comparison to the subsampled RDP bounds of Girgis et al. (2021)

Girgis et al. (2021) consider a protocol where a randomly sampled, fixed sized subset of users sends
contributions to the shuffler on each round, and the local randomisers are assumed to be integer-valued
ε0-LDP mechanisms. This can be seen as a composition of a shuffler and a subsampling mechanism. We
can generalise our analysis to this case via Lemma 7, and use Algorithm 1 of Doroshenko et al. (2022) on
the function h(α) defined in Equation 2.3 to obtain the dominating pair of distributions for the subsampled
shuffler. To this end, we need to define a grid for α: {α0, . . . , αnα+1}, where 0 = α0 < α1 < . . . < αnα <
αnα+1 = ∞. We consider a logarithmically equidistant grid between α1 and αnα . Thus, in practice this
means that we need to determine α1 and αnα and the value nα. Figure 2 illustrates the convergence of
the obtained approximation as we refine the α-grid, for a subsampled shuffler, where the dominating pair of
distributions P and Q for the non-subsampled shuffler are obtained from (Thm. 3.1 Feldman et al., 2023).

As we see from Figure 3, this approach leads to considerably lower ε(δ)-bounds than the approach by Girgis
et al. (2021). Notice that the tightness of the PLD-based bound is mostly determined by the analysis
of Feldman et al. (2023) which gives the dominating pair (P,Q) of Equation 3.1 and that the RDP-based
analysis of Girgis et al. (2021) is fundamentally different.
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δ

RDP, nc = 4

RDP, nc = 3

RDP, nc = 2

RDP, nc = 1

PLD, nc = 4

PLD, nc = 3

PLD, nc = 2

PLD, nc = 1

Figure 1: Evaluation of δ(ε) for general single and composite shuffle ε0-LDP mechanisms using RDP
accounting and FFT-based numerical accounting (PLD) applied to the pair of distributions P and Q given
by the post-processing result of Feldman et al. (2023). Number of users n = 104 and the LDP parameter
ε0 = 4.0.

0.2 0.4 0.6 0.8 1.0
ε

10−11

10−9

10−7

10−5

10−3

10−1

δ

Doroshenko et al., nα = 500

Doroshenko et al., nα = 3000

Hα(q · P + (1− q) ·Q||Q)

Figure 2: We apply FFT-based method on the dominating pair of distributions given by Algorithm 1
of Doroshenko et al. (2022) applied on the function h(α) that we obtain from Lemma 7, for different sizes
of α-grids. Here, the underlying P and Q are obtained from the analysis of Feldman et al. (2023), and we
set ε0 = 3.0, n = 104, nc = 2000, subsampling ratio q = 0.01, α1 = exp(−0.25), αnα = exp(0.25), and take
a logarithmically equidistant α-grid. We also plot Heε(q · P + (1− q) ·Q||Q) for comparison.

7



Published in Transactions on Machine Learning Research (03/2023)

101 102 103 104
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D
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ε0 = 3.0, n = 105, q = 0.01, δ = 1/n

ε from RDP upper bound (Girgis et al., 2021)

ε from PLD + FFT accountant

Figure 3: Evaluation of ε(δ) for compositions of subsampled shufflers of ε0-local randomisers. We compare
the bounds obtained using the FFT-accounting and the PLD determined by the numerical method of
(Doroshenko et al., 2022, Algorithm 1) applied to the dominating pair of Equation 3.1 and the RDP-bounds
given in Thm. 2 of (Girgis et al., 2021) that are mapped to ε(δ)-bounds using Lemma 1 of (Girgis et al.,
2021). Here the number of compositions nc varies and n is fixed. Here q denotes the subsampling ratio.

4 Shuffled k-randomised response

Balle et al. (2019) give a protocol for n parties to compute a private histogram over the domain [k] in the
single-message shuffle model. The randomiser is parameterised by a probability γ, and consists of a k-ary
randomised response mechanism (k-RR) that returns the true value with probability 1− γ and a uniformly
random value with probability γ. Denote this k-RR randomiser by RPHγ,k,n and the shuffling operation by S.
Thus, we are studying the privacy of the shuffled randomiserM = S ◦ RPHγ,k,n.
Consider first the proof of Balle et al. (2019, Thm. 3.1). Assuming without loss of generality that the differing
data element between X and X ′, X,X ′ ∈ [k]n, is xn, the (strong) adversary As used by Balle et al. (2019,
Thm. 3.1) is defined as follows.
Definition 12. Let M = S ◦ RPHγ,k,n be the shuffled k-RR mechanism, and w.l.o.g. let the differing element
be xn. We define adversary As as an adversary with the view

ViewAsM(X) =
(
(x1, . . . , xn−1), β ∈ {0, 1}n, (yπ(1), . . . , yπ(n))

)
,

where y are the outputs from the shuffler, β is a binary vector identifying which parties answered randomly,
and π is a uniformly random permutation applied by the shuffler.

Assuming w.l.o.g. that the differing element xn = 1 and x′n = 2, the proof then shows that for any possible
view V of the adversary As,

P(ViewAsM(X) = V )
P(ViewAsM(X ′) = V )

= N1 + 1
N2

, (4.1)

where Ni denotes the number of messages received by the server with value i after removing from the output
Y any truthful answers submitted by the first n− 1 users. The (ε, δ)-analysis of Balle et al. (2019) is based
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on showing that for all neighbouring X and X ′,

ViewAsM(X) '(ε,δ) ViewAsM(X ′) (4.2)

for
δ(ε) = P

(
N1 + 1
N2

≥ eε
)
, (4.3)

where the randomness of (N1, N2) is determined by ViewAsM(X). Instead of being mutually independent
binomially distributed random variables as argued in the proof of Balle et al. (2019, Thm. 3.1), we claim
that N1 and N2 are distributed as follows.
Lemma 13. Let the ViewAsM(X) be defined as in Def. 12. N1 and N2 denote the number of outcomes of
the first n− 1 local randomisers that are results of randomisation and equal 1 and 2, respectively. Then the
counts N1 and N2 are distributed as

(N1, N2) ∼ (A,C),
where A ∼ Bin(n− 1, γk ) and C ∼ Bin(n− 1−A, γ

k−γ ).

Proof. First, more generally, consider n − 1 independent trials and random variables for the numbers of
observations for three classes: N1, N2 and a remainder class, with corresponding probabilities p1, p2 and
1− p1 − p2. Then, the multinomial probability gives

P
(
(N1, N2) = (n1, n2)

)

= (n− 1)!
n1!n2!(n− 1− n1 − n2)!p

n1
1 pn2

2 (1− p1 − p2)n−1−n1−n2

= (n− 1)!
n1!(n− 1− n1)!p

n1
1 (1− p1)n−1−n1 · (n− 1− n1)!

n2!(n− 1− n1 − n2)!
pn2

2 (1− p1 − p2)n−1−n1−n2

(1− p1)n−1−n1

= (n− 1)!
n1!(n− 1− n1)!p

n1
1 (1− p1)n−1−n1 · (n− 1− n1)!

n2!(n− 1− n1 − n2)!

(
p2

1− p1

)n2 (1− p1 − p2
1− p1

)n−1−n1−n2

= n!
n1!(n− 1− n1)!p

n1
1 (1− p1)n−1−n1 ·

[
(n− 1− n1)!

n2!(n− 1− n1 − n2)!

(
p2

1− p1

)n2 (
1− p2

1− p1

)n−1−n1−n2
]
.

We recognise the probabilities of binomial distributions, and see that

(N1, N2) ∼ (A,C),

where A ∼ Bin(n− 1, p1) and C ∼ Bin(n− 1−A, p2
1−p1

). When V ∼ ViewAsM(X), we can think of N1 and N2
as numbers of outcomes of n− 1 independent trials where both classes have probabilities γ/k. Substituting
p1 = p2 = γ/k in the above formula shows the claim.

Using the reasoning of Balle et al. (2019, Thm. 3.1) (Equation 4.1), we can explicitly write the PLD which
gives us tight (ε, δ)-bounds. Recall from Def. 5 that the privacy loss random variable for ViewAsM is given by

ωAsX/X′ = log
(

P(ViewAsM(X) = V )
P(ViewAsM(X ′) = V )

)
, V ∼ ViewAsM(X). (4.4)

Using this definition of PRV, Equation 4.1 and Lemma 13, we get the following.
Theorem 14. Consider the adversary As as given in Def 12. For all neighbouring datasets X and X ′, the
PRV for ViewAsM is given by

ωAs = log
(
N1 + 1
N2

)
,

where
(N1, N2) ∼ (A,C),

and A ∼ Bin(n− 1, γk ) and C ∼ Bin(n− 1−A, γ
k−γ ).
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Notice that this expression for ωAs is independent of any input to the local randomisers and holds for any
neighbouring datasets X and X ′. Therefore it allows computing tight δ(ε)-bounds for adaptive compositions
of the k-RR shuffler in case we assume the adversary of Def. 12.

4.1 Tight bounds for weaker adversaries

Following the reasoning used for analysing the bounds against the adversary As of Def. 12, we can compute
tight δ(ε)-bounds also for an adversary that has less information about the local randomisers. Having tight
bounds also enables us to evaluate exactly how much different assumptions on the adversary cost us in terms
of privacy. Instead of the adversary As we analyse a weaker adversary Aw, who has extra information only
on the first n− 1 parties. We formalise this as follows.
Definition 15. Let M = S ◦ RPHγ,k,n be the shuffled k-RR mechanism, and w.l.o.g. let the differing element
be xn. Adversary Aw is an adversary with the view

ViewAwM (X) =
(
(x1, . . . , xn−1), β ∈ {0, 1}n−1, (yπ(1), . . . , yπ(n))

)
,

where y are the outputs from the shuffler, β is a binary vector identifying which of the first n − 1 parties
answered randomly, and π is a uniformly random permutation applied by the shuffler.

Note that compared to the stronger adversary As formalised in Def. 12, the difference is only in the vector
β. We write b =

∑
i βi, and B for the corresponding random variable in the following. The next theorem

gives the random variables we need to calculate privacy bounds for adversary Aw.
Theorem 16. Consider the adversary Aw as given in Def 15. For all neighbouring datasets X and X ′, the
PRV for ViewAwM is given by

ωAw = log
(
Pw
Qw

)
,

where
Pw = P1 + P2, Qw = Q1 +Q2, (4.5)

and
P1 ∼ (1− γ) ·N1|B, P2 ∼

γ

k
· (B + 1),

Q1 ∼ (1− γ) ·N2|N1, B, Q2 ∼
γ

k
· (B + 1),

B ∼ Bin(n− 1, γ),

NB
1 |B ∼ Bin

(
B,

1
k

)
,

N1|B ∼ NB
1 |B +Rn,

Rn ∼ Bern(1− γ + γ/k),

N2|N1, B ∼ Bin
(
B + 1−N1|B,

1
k − 1

)
.

As a direct corollary to this result, and analogously to the case of the adversary As, since the PLD ω
Aw is

independent of any input to the local randomisers, we obtain tight δ(ε)-bounds against the adversary Aw
for adaptive compositions using ωAw .

4.2 Experimental comparison between specialized analysis of k-RR (Balle et al., 2019) and
specialized Clones - analysis (Feldman et al., 2023)

In Figure 4 we compare the tight bounds obtained using the PRVs ωAs and ωAw with numerical FFT-
based accounting, and the PLD obtained from the k-RR specific analysis of Feldman et al. (2023, Thm 5.2)
combined with numerical accounting. We tune the parameters of the FFT-based numerical accounting so
that the discretisation error is negligible. Notice that the underlying analysis of k-RR with the adversaries
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As, Aw has stronger assumptions about the adversary than the analysis by Feldman et al. (2023), as the
adversaries know which of the messages were randomised (except for the differing element in case of the
weaker adversary Aw). For the weaker adversary Aw, we already obtain stronger guarantees than by using
the analysis of Feldman et al. (2023).

10−7 10−6 10−5 10−4

δ

0

1

2

3

4

5

ε

Feldman et al. (2023, Thm. 5.1), nc = 16

Feldman et al. (2023, Thm. 5.1), nc = 4

Feldman et al. (2023, Thm. 5.1), nc = 1

Adversary As, nc = 16

Adversary As, nc = 4

Adversary As, nc = 1

Adversary Aw, nc = 16

Adversary Aw, nc = 4

Adversary Aw, nc = 1

Figure 4: k-RR with the strong adversary As (PRV ωAs determined by Thm 14) and the weak adversary
(PRV ωAs determined by Thm 16) and tight (ε, δ)-DP bounds obtained using FFT-accounting for different
numbers of compositions nc. Here n = 1000, probability of randomising γ = 0.25, and k = 4. Also shown
are the bounds computed using the k-RR specific result by Feldman et al. (2023, Thm 5.2).

5 On the difficulty of obtaining bounds in the general case

We have provided means to compute accurate (ε, δ)-bounds for the general ε0-LDP shuffler using the results
by Feldman et al. (2023) and tight bounds for the case of k-randomised response. Using the following
example, we illustrate the computational difficulty of obtaining tight bounds for arbitrary local randomisers.

Consider neighbouring datasets X,X ′ ∈ Rn, where all elements of X are equal, and X ′ contains one element
differing by 1. Without loss of generality (due to shifting and scaling invariance of DP), we may consider the
case where X consists of zeros and X ′ has 1 at some element. Considering a mechanismM that consists of
adding Gaussian noise with variance σ2 to each element and then shuffling, we see that the adversary sees
the output ofM(X) distributed asM(X) ∼ N (0, σ2In), and the outputM(X ′) as the mixture distribution
M(X ′) ∼ 1

n · N (e1, σ
2In) + . . .+ 1

n · N (en, σ2In), where ei denotes the ith unit vector.

Determining the hockey-stick divergence Heε(M(X ′)||M(X)) cannot be projected to a lower-dimensional
problem, unlike in the case of the (subsampled) Gaussian mechanism, for example, which is equivalent to a
one-dimensional problem. This means that in order to obtain tight (ε, δ)-bounds, we need to numerically
evaluate the n-dimensional hockey-stick integral Heε(M(X ′)||M(X)).

Using a numerical grid as in FFT-based accountants is unthinkable due to the curse of the dimensionality.
However, we may use the fact that for any dataset X, the density function fX(t) ofM(X) is a permutation-
invariant function, meaning that for any t ∈ Rn and for any permutation σ ∈ πn, fX

(
σ(t)

)
= fX(t). This

allows reducing the number of required points on a regular grid for the hockey stick integral from O(mn) to
O(mn/n!), where m is the number of discretisation points in each dimension. Recent research on numerical
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integration of permutation-invariant functions (e.g. Nuyens et al., 2016) suggests it may be possible to
significantly reduce or even eliminate the dependence on n using more advanced integration techniques.

In the Appendix C.2, we give results on experiments where we have computed Heε(M(X ′)||M(X)) using
Monte Carlo integration on a hypercube [−L,L]n which requires ≈ 5 · 107 samples for getting two correct
significant figures already for n = 7.

6 Discussion

We have shown how numerical privacy accounting with privacy loss distributions can be used to calculate
accurate upper bounds for the compositions of various (ε, δ)-DP mechanisms, as well as for different
adversaries in the shuffle model. An alternative accounting approach uses Rényi differential privacy (Mironov,
2017). We have carried out experimental comparisons between the RDP and the PLD approaches. As
illustrated by the comparison against the results of Girgis et al. (2021) in Fig. 3, numerical PLD accounting
can sometimes lead to considerably tighter bounds.

When comparing numerical and analytical privacy bounds, they are in many cases complementary and serve
different purposes. Numerical accountants allow finding the tightest possible bounds for implementations
and enable more unbiased comparison of algorithms when accuracy of accounting is not a factor. Analytical
bounds enable theoretical research and understanding of scaling properties of algorithms, but the inaccuracy
of the bounds raises the risk of misleading conclusions about privacy claims.

While our results provide improvements over previous state-of-the-art, they only provide optimal accounting
for k-randomised response. Developing optimal accounting for more general mechanisms as well as extending
the results to (ε0, δ0)-LDP base mechanisms are important topics for future research.
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A Auxiliary results for determining the PLD of general ε0 shufflers

We recall the following from Section 3.1. Denoting q = eε0p and q̃ = p
1−eε0p , p = 1

eε0 +1 , the dominating pair
of distributions (P,Q) is determined are given by the mixtures

P = q · P0 + (1− q)q̃ · P1 + (1− q)(1− q̃) · P2, Q = (1− q)q̃ · P0 + q · P1 + (1− q)(1− q̃) · P2,

where
P0 ∼ (A+ 1, C −A), P1 ∼ (A,C −A+ 1), P2 = (A,C −A)

and for n ∈ N, A and C are as

C ∼ Bin(n− 1, 2p), A ∼ Bin
(
C, 1

2
)
, ∆1 ∼ Bern (eε0p) and ∆2 ∼ Bin

(
1−∆1,

p
1−eε0p

)
.

In this section we give the expressions needed to determine the PLD

ωP/Q(s) =
∑

a,b
P(P = (a, b)) · δsa,b(s), sa,b = log

(
P(P = (a, b))
P(Q = (a, b))

)
, (A.1)

and similarly also ωQ/P .

A.1 Determining the log ratios sa,b

To determine sa,b’s, we need the following auxiliary results.
Lemma A.1. When b > 0 and a > 0, we have:

P(P0 = (a, b)) = a

b
· P(P1 = (a, b)).

Proof. We see that P0 = (a, b) if and only if A = a− 1 and C = a+ b− 1. Since

P(A = a− 1 |C = a+ b− 1) =
(
a+ b− 1
a− 1

)
1

2a+b−1

= a

b
·
(
a+ b− 1

a

)
1

2a+b−1

= a

b
· P(A = a |C = a+ b− 1),

we see that
P(P0 = (a, b)) = P(C = a+ b− 1) · P(A = a− 1 |C = a+ b− 1)

= P(C = a+ b− 1) · a
b
· P(A = a |C = a+ b− 1)

= a

b
· P(P1 = (a, b)),

since P1 = (a, b) if and only if A = a and C = a+ b− 1.

Lemma A.2. When b > 0 and a > 0, we have:

P(P0 = (a, b)) = (1− 2p)a
(n− a− b)p · P(P2 = (a, b)).

Proof. We see that P2 = (a, b) if and only if A = a and C = a+ b. Since

P(C = a+ b) =
(
n− 1
a+ b

)
(2p)a+b(1− 2p)n−1−a−b

= 2p
1− 2p

(
n− 1
a+ b

)
(2p)a+b−1(1− 2p)n−1−a−b+1

= 2p
1− 2p

n− a− b
a+ b

(
n− 1

a+ b− 1

)
(2p)a+b−1(1− 2p)n−1−a−b+1

= 2p
1− 2p

n− a− b
a+ b

· P(C = a+ b− 1)
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and since

P(A = a |C = a+ b− 1) =
(
a+ b− 1

a

)
1

2a+b−1 = 2b
a+ b

(
a+ b

a

)
1

2a+b = 2b
a+ b

· P(A = a |C = a+ b),

we see that
P(P0 = (a, b)) = P(C = a+ b− 1) · P(A = a− 1 |C = a+ b− 1)

= P(C = a+ b− 1) · a
b
· P(A = a |C = a+ b− 1)

= (1− 2p)a
(n− a− b)p · P(C = a+ b) · a

b
· P(A = a |C = a+ b)

= (1− 2p)a
(n− a− b)p · P(P2 = (a, b)).

As a corollary of Lemmas A.1 and A.2 we get the following expressions with which we can also determine
the log ratios sa,b.
Corollary A.3. We have:

P
(
P = (a, b)

)
=
[
q + (1− q)q̃ · b

a
+ (1− q)(1− q̃) (n− a− b)p

(1− 2p)a

]
· P
(
P0 = (a, b)

)

and
P
(
Q = (a, b)

)
=
[
q · b

a
+ (1− q)q̃ + (1− q)(1− q̃) (n− a− b)p

(1− 2p)a

]
· P
(
P0 = (a, b)

)
.

Probabilities for the cases a = 0 and b = 0 become extremely small already for moderate values of n. When
using the Hoeffding inequality based O(n)-approximation to determine the PLDs, we do not need to evaluate
these probabilities so we do not consider writing them out.

Corollary A.3 gives P
(
P = (a, b)

)
and P

(
Q = (a, b)

)
in terms of P(P0 = (a, b)), and that is given by the

following expression which we get by change of variables.
Lemma A.4. When a > 0,

P(P0 = (a, b)) =
(
n− 1
i

)(
i

j

)
pi(1− p)n−1−i 1

2i ,

where (a, b) = (j + 1, i− j) (i.e., C = i and A = j).

B More detailed proof of the Lemma: Lowering PLD computational complexity
using Hoeffding’s inequality

Using an appropriate tail bound (Hoeffding) for the binomial distribution, we can truncate part of the
probability mass and add it directly to δ. More specifically, if each PLD ωi, 1 ≤ i ≤ nc, in an nc-composition
is approximated by a truncated distribution ω̃i such that the truncated probability masses are τi ≥ 0,
respectively, then

δ(ε) = δ̃(ε) + δ(∞),

where δ̃(ε) is the value of the hockey-stick divergence obtained with the truncated PLDs ω̃i, 1 ≤ i ≤ nc, and
where

δ(∞) = 1−
∏

i

(1− τi) ≤
∑

i

τi,

gives an upper bound for the composition without truncations, see e.g. Thm 1 in Sommer et al. (2019).
Using the Hoeffding inequality we obtain an accurate approximation of ωP/Q (or ωQ/P ) with only O(n)
terms. We formalise this approximation as follows.
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Lemma 11. Let τ > 0. Consider the set

Sn = [max (0, (2p− cn)(n− 1)) ,min (n− 1, (2p+ cn)(n− 1))],

where cn =
√

log(4/τ)
2(n−1) and the set

Si = [max
(
0, ( 1

2 − ci) · i
)
,min

(
n− 1, ( 1

2 + ci) · i
)
],

where ci =
√

log(4/τ)
2·i . Then, the distribution ω̃P/Q defined by

ω̃P/Q(s) =
∑

i∈Sn

∑

j∈Si
P(P = (j + 1, i− j)) · δsj+1,i−j (s), sa,b = log

(
P(P=(a,b))
P(Q=(a,b))

)
(B.1)

has O(n · log(4/τ)) terms and differs from ωP/Q at most mass τ .

Proof. Using Hoeffding’s inequality for C ∼ Bin(n− 1, 2p) states that for c > 0,

P
(
C ≤ (2p− c)(n− 1)

)
≤ exp

(
− 2(n− 1)c2),

P
(
C ≥ (2p+ c)(n− 1)

)
≤ exp

(
− 2(n− 1)c2).

Requiring that 2 · exp
(
−2(n− 1)c2) ≤ τ/2 gives the condition c ≥

√
log(4/τ)
2(n−1) and the expressions for cn

and Sn. Similarly, we use Hoeffding’s inequality for A ∼ Bin(C, 1
2 ) and get expressions for ci and Si. The

total neglegted mass is at most τ/2 + τ/2 = τ . For the number of terms, we see that Sn contains at most
2cn(n − 1) =

√
n− 1

√
2 · log(4/τ) terms and for each i, Si contains at most 2cii =

√
i
√

2 · log(4/τ) ≤√
n− 1

√
2 · log(4/τ) terms. Thus ω̃P/Q has at most O(n · log(4/τ)) terms. We get the expression of

Equation B.1 by the change of variables a = i+ 1 (A = i) and b = i− j (C = j).

C Auxiliary results for Section 4

C.1 Proof of Theorem 16

Theorem C.1. Consider the adversary Aw as given in Def 15. For all neighbouring datasets X and X ′,
the PRV for ViewAwM is given by

ωAw = log
(
Pw
Qw

)
,

where
Pw = P1 + P2, Qw = Q1 +Q2, (C.1)

and
P1 ∼ (1− γ) ·N1|B, P2 ∼

γ

k
· (B + 1),

Q1 ∼ (1− γ) ·N2|N1, B, Q2 ∼
γ

k
· (B + 1),

B ∼ Bin(n− 1, γ),

NB
1 |B ∼ Bin

(
B,

1
k

)
,

N1|B ∼ NB
1 |B +Rn,

Rn ∼ Bern(1− γ + γ/k),

N2|N1, B ∼ Bin
(
B + 1−N1|B,

1
k − 1

)
.
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Proof. Assume w.l.o.g. that the differing elements are xn = 1, x′n = 2. Notice that for k-RR, seeing the
shuffler output is equivalent to seeing the total counts for each class resulting from applying the local
randomisers to X or X ′. The adversary Aw can remove all truthfully reported values by client j, j ∈ [n−1].
Denote the observed counts after this removal by ni, i = 1, . . . , k, so

∑k
i=1 ni = b+ 1.

We now have

P(ViewAwM (x) = V ) =
k∑

i=1
P(N1 = n1, . . . , Ni = ni − 1, Ni+1 = ni+1, . . . Nk = nk|B) · P(R(xn) = i) · P(B = b)

=
(

b

n1 − 1, n2, . . . , nk

)(
1
k

)b
·
(

1− γ + γ

k

)
· γb(1− γ)n−1−b

+
k∑

i=2

(
b

n1, . . . , ni − 1, ni+1, . . . , nk

)(
1
k

)b
· γ
k
· γb(1− γ)n−1−b

=
(

b

n1, n2, . . . , nk

)
γb(1− γ)n−1−b

kb

[
n1(1− γ + γ

k
) +

k∑

i=2
ni
γ

k

]

=
(

b

n1, n2, . . . , nk

)
γb(1− γ)n−1−b

kb

[
n1(1− γ + γ

k
) + (b+ 1− n1)γ

k

]

=
(

b

n1, n2, . . . , nk

)
γb(1− γ)n−1−b

kb

[
n1(1− γ) + γ

k
(b+ 1)

]
.

(C.2)
Noting then that P(RPHγ,k,n(x′n) = i) = (1 − γ + γ

k ) when i = 2 and γ
k otherwise, repeating essentially the

same steps gives

P(ViewAwM (X ′) = V ) =
(

b

n1, n2, . . . , nk

)
γb(1− γ)n−1−b

kb

[
n2(1− γ) + γ

k
(b+ 1)

]
. (C.3)

Looking at the ratio of the two final probabilities given in Equation C.2 and in Equation C.3, we get

P(ViewAwM (X) = V )
P(ViewAwM (X ′) = V )

=
N1|B · (1− γ) + γ

k (B + 1)
N2|N1, B · (1− γ) + γ

k (B + 1) ,

where we write, e.g., N1|B for the random variables N1 conditional on B. This shows that for DP bounds,
the adversaries’ full view is equivalent to only considering the joint distribution of (N1, N2, B), and we can
therefore look at the neighbouring random variables

Pw = P1 + P2, Qw = Q1 +Q2, (C.4)

where
P1 ∼ (1− γ) ·N1|B, P2 ∼

γ

k
· (B + 1),

Q1 ∼ (1− γ) ·N2|N1, B, Q2 ∼
γ

k
· (B + 1).

Writing NB
i , i = 1, 2, for the count in class i resulting from the noise sent by the n− 1 parties, and denoting

by Rn a Bernoulli random variable s.t. Rn = 1, if R(xn) = 1, similarly to the proof in case of the strong
adversary, we have

B ∼ Bin(n− 1, γ), NB
1 |B ∼ Bin

(
B,

1
k

)
, Rn ∼ Bern(1− γ + γ/k). (C.5)

As V ∼ ViewAwM (X), and

N2|N1,Rn, B ∼
{

Bin(B + 1−N1|B, 1
k−1 ), if Rn = 1,

Bin(B −N1|B, 1
k−1 ) + Bern( 1

k−1 ), if Rn = 0,
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we finally have
N1|B = NB

1 |B +Rn, N2|N1, B = Bin(B + 1−N1|B,
1

k − 1). (C.6)

The distributions of Equation C.5 and Equation C.6 determine the neighbouring distributions Pw and Qw
that are given in Equation C.4. This completes the proof.

C.2 Experiment for Section 5

Consider neighbouring datasets X,X ′ ∈ Rn, where all elements of X are equal, and X ′ contains one element
differing by 1. Without loss of generality (due to shifting and scaling invariance of DP), we may consider the
case where X consists of zeros and X ′ has 1 at some element. Considering a mechanismM that consists of
adding Gaussian noise with variance σ2 to each element and then shuffling, we see that the adversary sees
the output ofM(X) distributed asM(X) ∼ N (0, σ2In), and the outputM(X ′) as the mixture distribution
M(X ′) ∼ 1

n ·N (e1, σ
2In)+ . . .+ 1

n ·N (en, σ2In), where ei denotes the ith unit vector. In order to obtain tight
(ε, δ)-bounds, we need to numerically evaluate the n-dimensional hockey-stick integral Heε(M(X ′)||M(X)).

In Figure 5 we have computed Heε(M(X ′)||M(X)) up to n = 7 using Monte Carlo integration on a
hypercube [−L,L]n which requires ≈ 5 · 107 samples for getting two correct significant figures for n = 7.

0.5 1.0 1.5 2.0
ε

10−13

10−11

10−9

10−7

10−5

10−3

10−1

δ

n=2

n=4

n=6

n=7

Figure 5: Approximation of tight δ(ε) for shuffled outputs of Gaussian mechanisms (σ = 2.0) by Monte Carlo
integration of the hockey-stick divergence Heε(M(X ′)||M(X)), using 5 ·107 samples (two correct significant
figures).
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Abstract

Learning a privacy-preserving model from sensitive data which are distributed across multiple
devices is an increasingly important problem. The problem is often formulated in the federated
learning context, with the aim of learning a single global model while keeping the data
distributed. Moreover, Bayesian learning is a popular approach for modelling, since it
naturally supports reliable uncertainty estimates. However, Bayesian learning is generally
intractable even with centralised non-private data and so approximation techniques such as
variational inference are a necessity. Variational inference has recently been extended to the
non-private federated learning setting via the partitioned variational inference algorithm.
For privacy protection, the current gold standard is called differential privacy. Differential
privacy guarantees privacy in a strong, mathematically clearly defined sense.

In this paper, we present differentially private partitioned variational inference, the first gen-
eral framework for learning a variational approximation to a Bayesian posterior distribution
in the federated learning setting while minimising the number of communication rounds and
providing differential privacy guarantees for data subjects.

We propose three alternative implementations in the general framework, one based on
perturbing local optimisation runs done by individual parties, and two based on perturbing
updates to the global model (one using a version of federated averaging, the second one
adding virtual parties to the protocol), and compare their properties both theoretically and
empirically. We show that perturbing the local optimisation works well with simple and
complex models as long as each party has enough local data. However, the privacy is always
guaranteed independently by each party. In contrast, perturbing the global updates works
best with relatively simple models. Given access to suitable secure primitives, such as secure
aggregation or secure shuffling, the performance can be improved by all parties guaranteeing
privacy jointly.
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1 Introduction

Communication-efficient distributed methods that protect user privacy are a basic requirement for many
machine learning tasks, where the performance depends on having access to sensitive personal data. Federated
learning (Brendan McMahan et al., 2016; Kairouz et al., 2019) is a common approach for increasing
communication efficiency with distributed data by pushing computations to the parties holding the data,
thereby leaving the data where they are. While it has been convincingly demonstrated that federated learning
by itself does not guarantee any kind of privacy (Zhu et al., 2019), it can be combined with differential privacy
(DP, Dwork et al. 2006b; Dwork & Roth 2014), which does provide formal privacy guarantees.

In settings which require uncertainty quantification as well as high prediction accuracy, Bayesian methods
are a natural approach. However, Bayesian posterior distributions are often intractable and need to be
approximated. Variational inference (VI, Jordan et al. 1999; Wainwright et al. 2008) is a well-known and
widely used approximation method based on solving a related optimisation problem; the most common
formulation minimises the Kullback-Leibler divergence between the approximation and the true posterior.

In this paper, we focus on privacy-preserving federated VI in the cross-silo setting (Kairouz et al., 2019).
We consider a common and important setup, where the parties (or ‘clients’) have sensitive horizontally
partitioned data, i.e., local data with shared features, and the aim is to learn a single model on all the data.
Such a setting arises, for example, when several hospitals want to train a joint model on common features
without sharing their actual patient data with any other party. Our main problem is to learn a posterior
approximation from the partitioned data under DP, while trying to minimise the amount of server-client
communications.

We propose a general framework to solve the problem based on partitioned variational inference (PVI, Ashman
et al. 2022). On a conceptual level, the main steps of PVI are the following: i) server sends current global
model to clients, ii) clients perform local optimisation using their own data, iii) clients send updates to
server, iv) server updates the global approximation. In our solution, called differentially private partitioned
variational inference (DP-PVI), the clients enforce DP either independently or, given access to some suitable
secure primitive, jointly with the other clients. We consider three different implementations of DP-PVI, one
based on perturbing the local optimisation at step ii) of PVI (called DP optimisation), and two on perturbing
the model updates at step iii) of PVI (called local averaging and virtual PVI clients).

Crucially, we empirically demonstrate that with our approaches the number of communication rounds
between the server and the clients can be kept significantly lower than in the existing DP VI baseline
solution, that requires communicating gradients for each regular VI optimisation step, while achieving nearly
identical performance in terms of accuracy and held-out likelihood. Additionally, while the baseline requires
communicating the gradients using some suitable secure primitive to achieve good utility, our approaches do
not require any such primitives, although they can be easily combined with two of our approaches (local
averaging and virtual PVI clients).1 Finally, compared to the communication minimising baselines given
by DP Bayesian committee machines, that require a single communication round between the server and
the clients, our solutions provide clearly better prediction accuracies and held-out likelihoods in a variety of
settings.

Our contribution Our main contributions are the following:

• We introduce DP-PVI, a communication-efficient general approach for DP VI on horizontally
partitioned data.

• Within the general framework, we propose three differing implementations of DP-PVI, one based on
perturbing local optimisation, termed DP optimisation, and two based on perturbing model updates,
that we call local averaging and virtual PVI clients.

• Compared to the baseline of standard (global) DP VI, we experimentally show that our proposed
implementations need orders of magnitude fewer server-client communication rounds, and can be

1In this paper, instead of considering any specific secure primitive implementation, such as a secure aggregator or a secure
shuffler, we assume access to a black-box trusted aggregator in the comparisons.
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trained without any secure primitives, while achieving comparable model utility under various settings.
Compared to the DP Bayesian committee machine baselines, all our implementations can significantly
improve on the resulting approximation quality under various models and datasets.

• We compare the relative advantages and disadvantages of our methods, both theoretically and
experimentally, and make recommendations on how to choose the best method based on the task at
hand:

– We demonstrate that no single implementation outperforms the others in all settings.
– We show that DP optimisation works well when there is enough local data available, on both

simple and complex models. However, it not benefit from access to secure primitives. It can
therefore lag behind the other methods when there are many clients without much local data,
but with access to a trusted aggregator.

– In contrast, local averaging and virtual PVI clients work best with relatively simple models, but
can struggle with more complex ones. Since they can directly benefit from access to a trusted
aggregator, they can outperform DP optimisation in a setting with many clients, little local data
on each, and a trusted aggregator available. We find that using virtual PVI clients tends to be
more stable than local averaging.

2 Related work

In the non-Bayesian setting, federated learning, with and without privacy concerns, has seen a lot of recent
research (Kairouz et al., 2019).

VI without privacy has been considered in a wide variety of configurations, a considerable proportion of
which can be interpreted as specific implementations of PVI. With just a single client, the local free-energy
is equivalent to the global free-energy and global VI is recovered (Hinton & Van Camp, 1993). PVI with
multiple clients unifies many existing local VI methods, in which each factor involves a subset of datapoints
and may also include only a subset of variables over which the posterior is defined. This includes variational
message passing (Winn et al., 2005) and its extensions (Knowles & Minka, 2011; Archambeau & Ermis, 2015;
Wand, 2014), and is related to conjugate-computation VI (Khan & Lin, 2017). When only a single pass is
made through the clients, PVI recovers online VI (Ghahramani & Attias, 2000), streaming VI (Broderick
et al., 2013) and variational continual learning (Nguyen et al., 2018). See Ashman et al. (2022) for a more
detailed overview of the relationships between PVI and these methods.

There is a rich literature on Bayesian learning with DP guarantees in various settings. Perturbing sufficient
statistics in exponential family models has been applied both with centralised data (Dwork & Smith, 2010;
Foulds et al., 2016; Zhang et al., 2016; Honkela et al., 2018) as well as with distributed data (Heikkilä et al.,
2017). In the centralised setting, Dimitrakakis et al. (2014) showed that under some conditions, drawing
samples from the true posterior satisfies DP. Posterior sampling under DP has been extended (Zhang et al.,
2016; Geumlek et al., 2017; Dimitrakakis et al., 2017), and generalised also based on, e.g., Langevin and
Hamiltonian dynamics (Wang et al., 2015; Li et al., 2019; Räisä et al., 2021) as well as on general Markov
chain Monte Carlo (Heikkilä et al., 2019; Yıldırım & Ermiş, 2019). As an orthogonal direction for combining
Bayesian learning with DP, Bernstein & Sheldon (2018) proposed a method for taking the DP noise into
account when estimating the posterior with exponential family models to avoid model overconfidence.

DP-VI has been previously considered in the centralised setting. Jälkö et al. (2017) first introduced DP-VI for
non-conjugate models based on DP-SGD, while Foulds et al. (2020) proposed a related variational Bayesian
expectation maximization approach based on sufficient statistics perturbation for conjugate exponential
family models.

Also in the centralised setting, Vinaroz & Park (2021) recently proposed DP stochastic expectation propagation,
an alternative approximation method to VI that also has some close ties to the PVI framework (see e.g. Ashman
et al. 2022), based on natural parameter perturbation. While there are several technical differences in how
DP is guaranteed, and Vinaroz & Park (2021) do not discuss the distributed setting or propose a federated
algorithm, we would expect that there is no fundamental reason why their approach could not be made to
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work in the federated setting as well, given enough changes to the centralised algorithm. With reasonable
privacy parameters, we would expect comparisons to reflect the general properties of the underlying non-DP
approaches (see e.g. Minka 2005; Li et al. 2015; Ashman et al. 2022 and the references therein for a discussion
on the properties of non-DP variational and EP-style algorithms). The application of such methods to the
private federated setting would be an interesting direction for future work.

In the non-Bayesian DP literature, the basic idea in our local averaging and virtual client approaches is close
to the subsample and aggregate approach proposed by Nissim et al. (2007). In the same vein as our local
averaging, Wei et al. (2020) proposed training a separate model for each single data point and combining the
models by averaging the parameters in the context of learning neural network weights under DP. They do
not consider other possible partitions or the trade-off between DP noise and the estimator variance.

3 Background

In this section we give a short overview of the most important background knowledge, starting with PVI in
Section 3.1 and continuing with DP in Section 3.2.

3.1 Partitioned variational inference (PVI)

In Bayesian learning, we are interested in the posterior distribution

p(θ|x) ∝ p(x|θ)p(θ),

where p(θ) is a prior distribution, p(x|θ) is a likelihood, x ∈ X n is some dataset of size n, and θ are the model
parameters. Note that these are all different distributions, but we overload the notation in a standard way
and identify the distributions by their arguments to keep the writing less cumbersome. For example, instead
of pθ(θ) we simply write p(θ) for the prior. In this paper, we typically have θ ∈ Rd for some d, and each
element xi ∈ Rd′

, i = 1, . . . , n for some d′.

When the posterior is in the exponential family of distributions, it is always tractable (see, e.g., Bernardo &
Smith 1994):
Definition 1. A distribution over x ∈ X n, indexed by a parameter vector θ ∈ Θ ⊂ Rd is an exponential
family distribution, if it can be written as

p(x|θ) = h(x) exp (T (x) · η(θ) − A(η(θ))) (3.1)

for some functions h : X n → R, T : X n → Rd, A : Θ → R. When η(θ) = η, the parameters η are called
natural parameters, T are sufficient statistics, A is the log-partition function, and h is a base measure.

When the posterior is not in the exponential family, however, we need to resort to approximations. VI is a
method for approximating the true posterior by solving an optimization problem over some tractable family
of distributions (see e.g. Jordan et al. 1999 for an introduction to VI and Zhang et al. 2019 for a survey of
more recent developments).

Writing q(θ|λ) for the approximating distribution parameterised with variational parameters λ ∈ RdV I for
some dV I , the main idea in VI is to find optimal parameters λ∗

V I that minimise some notion of distance
between the approximation and the true posterior, with the most common choice being Kullback-Leibler
divergence:

λ∗
V I = arg min

q∈Q

[
DKL(q(θ|λ)∥p(θ|x))

]
, (3.2)

where Q is some tractable family of distributions. However, since the optimisation problem in Equation 3.2 is
usually still not easy-enough for solving directly, the actual optimisation is typically done by maximising the
so-called evidence lower bound (ELBO, also called negative variational free-energy):

λ∗
V I = arg max

q∈Q

[
Eq[log p(x|θ)] − DKL(q(θ|λ)∥p(θ))

]
. (3.3)

4



Published in Transactions on Machine Learning Research (04/2023)

It can be shown that the optimal solution λ∗
V I that solves Equation 3.3 also solves the original minimization

problem in Equation 3.2.

In the setting we consider, there are M clients with shared features, and client j holds nj samples. In the
PVI framework (Ashman et al., 2022), this federated learning problem is solved iteratively. We start by
defining the following variational approximation:

q(θ|λ) = 1
Zq

p(θ)
M∏

j=1
tj(θ|λj) ≃ 1

Z
p(θ)

M∏

j=1
p(xj |θ) = p(θ|x), (3.4)

where λ, λj are variational parameters, Zq, Z are normalizing constants, xj is the jth data shard, and tj are
client-specific factors refined over the algorithm run. The basic structure of the general PVI algorithm is
given in Algorithm 1.

Note that in Algorithm 1, during the local optimisation (Equation 3.5) the cavity distribution (Equation 3.6)
works as an effective prior: the variational parameters for the factors tj , j ̸= m are kept fixed to their previous
values.

Algorithm 1 Non-private PVI (Ashman et al., 2022)
Require: Number of global updates S, prior p(θ), initial client-specific factors t

(0)
j , j = 1, . . . , M .

1: for s = 1 to S do
2: Server chooses a subset b(s) ⊆ {1, . . . , M} of clients according to an update schedule and sends the

current global model parameters λ(s−1).
3: Each chosen client m ∈ b(s) finds a new set of parameters by optimising the local ELBO:

λ∗ = arg max
q∈Q

[
Eq[log p(xm|θ)] − DKL(q(θ|λ)∥p

(s−1)
\m (θ))

]
, (3.5)

where p
(s−1)
\m is the so-called cavity distribution:

p
(s−1)
\m (θ) ∝ p(θ)

M∏

j ̸=m

tj(θ|λ(s−1)
j ). (3.6)

4: Each chosen client sends an update ∆t
(s)
m (θ), given by

∆t(s)
m (θ) ∝ tm(θ|λ∗

m)
tm(θ|λ(s−1)

m )
∝ q(θ|λ∗)

q(θ|λ(s−1)) , (3.7)

to the server.
5: Server updates the global model by incorporating the updated local factors:

q(θ|λ(s)) ∝ q(θ|λ(s−1))
∏

m∈b(s)

∆t(s)
m (θ).

6: end for
7: return Final variational approximation q(θ|λ(S)).

As a high-level overview, the PVI learning loop consists of the server sending current model to clients, the
clients finding new local parameters via local optimisation, the clients sending an update to the server, and
the server updating the global approximation.

Depending on the update schedule different variants of PVI are possible. In this paper, we use sequential PVI,
where each client is visited in turn, and synchronous PVI, where all clients update in parallel (see Ashman
et al. 2022 for more discussion on the PVI variants). The main idea in PVI is that the information from other
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sites is transmitted to client m via the other t-factors, while client m runs optimisation with purely local
data. This reduces the number of server-client communications by pushing more computation to the clients.

Ashman et al. (2022) show that PVI has several desirable properties that connect it to the standard non-
distributed (global) VI. Most importantly, optimising the local ELBO as in Equation 3.5 can be shown to be
equivalent to a variational KL optimisation, and a fixed point of PVI is guaranteed to be a fixed point of the
global VI.

3.2 Differential privacy (DP)

DP is essentially a robustness guarantee for stochastic algorithms (see e.g. Dwork & Roth 2014 for an
introduction to DP and discussion on the definition of privacy). Formally we have the following:
Definition 2 (Dwork et al. 2006b;a). Let ε > 0 and δ ∈ [0, 1]. A randomised algorithm A : X n → O is
(ε, δ)-DP if for every neighbouring x, x′ ∈ X n and every measurable set E ⊂ O,

Pr(A(x) ∈ E) ≤ eεPr(A(x′) ∈ E) + δ.

The basic idea in the definition is that any single individual should only have a limited effect on the output.
When this is guaranteed, the privacy of any given individual is protected, since the result would have been
nearly the same even if that individual’s data had been replaced by an arbitrary sample. Definition 2
formalises this idea by requiring that the probability of seeing any given output is nearly the same with any
closely-related input dataset (the neighbouring datasets x, x′). The actual level of protection depends on the
privacy parameters ε, δ: larger values mean less privacy.

The type and granularity of the privacy guarantee can be tuned by choosing an appropriate neighbourhood
definition. Typical examples include sample-level (x, x′ differ by a single sample) and user-level (x, x′ differ
by a single user’s data) neighbourhoods. In this work, we use the bounded neighbourhood definition, which is
also known as substitution neighbourhood, and assume that each individual has a single sample in the full
combined training data, i.e., datasets x, x′ are neighbours, if |x| = |x′|, and they differ by a single sample.
With these definitions, individual privacy guarantees correspond to sample-level DP.

DP has several nice properties as a privacy guarantee, but the most important ones for our purposes are
composability (repeated use of the same sensitive data erodes the privacy guarantees in a controllable
manner), and immunity to post-processing (if the output of a stochastic algorithm is DP, then any stochastic
or deterministic post-processing results in the same or stronger DP guarantees).

We use the well-known Gaussian mechanism, that is, adding i.i.d. Gaussian noise with equal variance to each
component of a query vector, as a basic privacy mechanism:
Definition 3 (Gaussian mechanism, Dwork et al. 2006a). Let f : X n → Rd be a function s.t. for neighbouring
x, x′ ∈ X n, there exists a constant C > 0 satisfying

sup
x,x′

∥f(x) − f(x′)∥2 ≤ C.

A randomised algorithm G : G(x) = f(x) + ξ, where ξ ∼ N (0, σId) is called the Gaussian mechanism.

When a privacy mechanism, e.g., the Gaussian mechanism, is run by first subsampling a minibatch of the
full data, and running the mechanism using only the minibatch instead of the full data, the mechanism is
referred to as a subsampled mechanism. For subsampling, we use sampling without replacement:
Definition 4 (Sampling without replacement). A randomised function WORb : X n → X b is a sampling
without replacement subsampling function, if it maps a given dataset into a uniformly random subset of size
b of the input data.

The main benefit for privacy when using data subsampling is the effect of privacy amplification, i.e.,
the additional randomisation due to the subsampling enhances the privacy guarantees depending on the
subsampling method and the subsampling fraction given by qsample = b

n , where b is the minibatch size and n

6
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is the total data size in Definition 4. Given a base mechanism Aσ and a minibatch size b, the subsampled
mechanism using sampling without replacement is the combined mechanism Aσ ◦ WORb.

To quantify the total privacy resulting from (iteratively) running (subsampled) DP algorithms, we use the
following privacy accounting oracle:
Definition 5 (Accounting Oracle). An accounting oracle is a function O that evaluates (ϵ, δ)-DP privacy
bounds for compositions of (subsampled) mechanisms. Specifically, given δ, a sub-sampling ratio qsample ∈ (0, 1],
the number of iterations T ≥ 1 and a base mechanism Aσ, the oracle gives an ϵ, such that a T -fold composition
of Aσ using sub-sampling with ratio qsample is (ϵ, δ)-DP, i.e.,

O : (δ, qsample, T, Aσ) 7→ ϵ.

In the experiments, we use the Fourier accountant (Koskela et al., 2020) as an accounting oracle to keep
track of the privacy parameters, since it can numerically establish an upper bound for the total privacy loss
with a given precision level.

4 Differentially private partitioned variational inference

In the setting we consider, there are M parties or clients connected to a central server, with client j holding
some amount nj of data (we assume there is exactly one sample per individual protected by DP in the full
joint data) with common features (horizontal data partitioning). The clients do not want to share their data
directly but agree to train a model given DP guarantees. The DP guarantees are enforced on a sample-level,
that is, we assume that any given individual we want to protect has a single data sample that is held by
exactly one client. The central server aims to learn a single model from the clients’ data, while minimising
the number of communication rounds between the server and the clients.

As discussed in Section 3.1, the PVI framework allows for effectively reducing the number of global communi-
cation rounds by pushing more computation to the clients. This also enables several options for guaranteeing
DP on the client side, either by each client alone or jointly with the other clients via secure primitives.

We consider two general approaches the clients can use for enforcing DP in PVI learning:

1. Perturbing the local optimisation (step 3 in Algorithm 1),

2. Perturbing the model parameter updates (step 4 in Algorithm 1).

The first option, which we term DP optimisation, relies on the fact that at each optimisation step in
Algorithm 1, the local ELBO in Equation 3.5 only depends on the local data at the given client. To guarantee
DP independently of others, each client can therefore perturb the local optimisation with a suitable DP
mechanism. In practice, this approach can be implemented, e.g., using DP-stochastic gradient descent
(DP-SGD) as we show in Section 4.1.

For the second option, since a given client only affects the global model through the parameter updates at
step 4 in Algorithm 1, each client can enforce DP by perturbing the update, either independently or jointly
with the other clients. Besides the naive parameter perturbation, we propose two improved alternatives in
Section 4.2. We call these approaches local averaging and adding virtual PVI clients.

In this paper, instead of considering any particular secure primitive like secure aggregation (see e.g. Shamir
1979; Rastogi & Nath 2010) or secure shuffling (see e.g. Chaum 1981; Cheu et al. 2019), we assume a black-box
trusted aggregator capable of summing reals, where necessary. In these cases we also assume that the clients
themselves are honest, i.e., they follow the protocol and do not try to gain additional information during
the protocol run (or honest but curious, that is, they follow the protocol but will try to gain information
such as actual noise values used for DP randomisation during the protocol run, with minor modifications
to the relevant bounds). Any actual implementation would need to handle problems arising, for example,
from finite precision (see e.g. Agarwal et al. 2021; Chen et al. 2022 and references therein for a discussion on
implementing distributed DP). These considerations apply equally to all variants, and hence do not affect
their comparisons or our main conclusions. We leave these issues to future work.

7



Published in Transactions on Machine Learning Research (04/2023)

Table 1 highlights the most important DP noise properties of our proposed solutions: whether the DP noise
level can be affected by the local data size (intuitively, we could hope that guaranteeing DP with plenty of
local data gives better utility), and whether the approach can benefit from access to a trusted aggregator
(this enables the clients to guarantee DP jointly, so the total noise level can be less than when every client
enforces DP independently).

noise scale
affected by local

data size

benefit from a
trusted aggregator

DP optimisation ✓ x
parameter perturbation x ✓

local averaging ✓ ✓
virtual PVI clients ✓ ✓

Table 1: Properties of DP-PVI approaches

In the rest of this section we state the formal DP guarantees for each approach and discuss their properties.
For ease of reading, since the proofs are fairly straight-forward, all proofs as well as the properties of non-DP
local averaging can be found in Appendix A.

4.1 Privacy via local optimisation: DP optimisation

To guarantee DP during local optimisation, one option is to use differentially private stochastic gradient
descent (DP-SGD) (Song et al., 2013; Bassily et al., 2014; Abadi et al., 2016): for every local optimisation
step, we clip each per-example gradient and then add Gaussian noise with covariance σ2I to the sum. The
formal privacy guarantees are stated in Theorem 6.
Theorem 6. Running DP-SGD for client-level optimisation in Algorithm 1, using subsampling fraction
qsample ∈ (0, 1] on the local data level for T local optimisation steps in total, with S global updates interleaved
with the local steps, the resulting model is (ε, δ)-DP, with δ ∈ (0, 1) s.t. ε = O(δ, qsample, T, Gσ).

Proof. See proof A.1 in the Appendix.

Although DP-SGD in general is not guaranteed to converge, there are some known utility guarantees in the
empirical risk minimization (ERM) framework, e.g., for convex and strongly convex loss functions (Bassily
et al., 2014). It has also been empirically shown to work well on a number of problems with non-convex
losses, such as learning neural network weights (Abadi et al., 2016).

In our setting, DP-SGD can directly benefit from increasing local data size on a given client via the sub-
sampling amplification property: adding more local data while keeping the batch size fixed results in a smaller
sampling fraction qsample and hence gives better privacy.

In contrast, when using DP-SGD with a limited communication budget, it is non-trivial to derive direct
privacy benefits from adding more clients to the setting. This is the case even when we assume access to a
trusted aggregator, since the gradients of the local ELBO in Equation 3.5 only depend on a single client’s
data.

4.2 Privacy via model updates

To guarantee DP when communicating an update from client m to the server at global update s, we can clip
and perturb the change in model parameters corresponding to ∆t

(s)
m at step 4 in Algorithm 1 directly. This

naive parameter perturbation approach often results in having to add unpractical amounts of noise to each
query, which severely degrades the model utility. The problem arises because the local data size in this case
will typically have no direct effect either on the DP noise level or on the query sensitivity.
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To improve the results by allowing the local data size to have a direct effect on the noise addition, we propose
two possible approaches that generalise the naive parameter perturbation: i) local averaging and ii) adding
virtual PVI clients. Both are based on partitioning the local data into non-overlapping shards and optimising
a separate local model on each, but they differ on the objective functions and on how the local results are
combined after training for a global model update. Additionally, virtual PVI clients with DP requires all
virtual factors to be in a common exponential family.2 As a limiting case, when using a single local data
partition both methods are equivalent to the naive parameter perturbation.

Assuming a trusted aggregator, with both of our proposed methods we can scale the noise level with the
total number of clients in the protocol using O(MS) server-client communications, where M is the number of
clients and S the total number of global updates, the same number as running non-DP PVI with synchronous
updates.

Next, we present the methods and show that they guarantee DP, starting with local averaging in Section 4.2.1
and continuing with virtual PVI clients in Section 4.2.2.

4.2.1 Local averaging

Algorithm 2 describes the main steps needed for running (non-private) PVI with local averaging.

Algorithm 2 PVI with local averaging
1: Each client m = 1, . . . , M partitions its local data into Nm non-overlapping shards.
2: for s = 1 to S do
3: Server chooses a subset b(s) ⊆ {1, . . . , M} of clients according to an update schedule and sends the

current global model parameters λ(s−1).
4: Each chosen client m ∈ b(s) finds Nm sets of new parameters by optimising the local objectives all

starting from a common initial value (the previous global model parameters λ(s−1)):

λ∗
mk

= arg max
q∈Q

[
Eq[log p(xm,k|θ)] − 1

Nm
DKL(q(θ|λ)∥p

(s−1)
\m (θ))

]
, k = 1, . . . , Nm, (4.1)

where p
(s−1)
\m is the cavity distribution as in Equation 3.6. The new parameters used for calculating an

update for client m in PVI are given by the local average:

λ∗ = 1
Nm

Nm∑

k=1
λ∗

mk
. (4.2)

5: Each chosen client sends the update ∆t
(s)
m (θ), defined as

∆t(s)
m (θ) ∝ tm(θ|λ∗

m)
tm(θ|λ(s−1)

m )
∝ q(θ|λ∗)

q(θ|λ(s−1)) ,

to the server.
6: Server updates the global model by incorporating the updated local factors:

q(θ|λ(s)) ∝ q(θ|λ(s−1))
∏

m∈b(s)

∆t(s)
m (θ).

7: end for
8: return Final variational approximation q(θ|λ(S)).

2Non-DP PVI with synchronous updates has a similar restriction: all factors need to be in the same exponential family as
the prior due to issues with proper normalization, see Ashman et al. 2022. Therefore, when using synchronous PVI server all our
approaches, including DP optimisation, inherit this assumption as well.
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Note that the objective in Equation 4.1 is the regular PVI local ELBO where the KL-term is re-weighted to
reflect the local partitioning. This is equivalent to using the PVI objective with a tempered (cold) likelihood
p(xm,k|θ)Nm . In Appendix A, we show that PVI with local averaging has the same fundamental properties,
with minor modifications, as regular PVI. For example, with local averaging the local ELBO optimisation is
equivalent to a variational KL optimisation, and a (local) optimum for local averaging is also an optimum for
global VI.

DP with local averaging Assuming tj , j = 1, . . . , M are exponential family factors, in the client update
at step 5 in Algorithm 2, we can write

∆t(s)
m (θ) = ∆λ∗

m (4.3)
= λ∗ − λ(s−1) (4.4)

= 1
Nm

Nm∑

k=1
λ∗

mk
− λ(s−1) (4.5)

= 1
Nm

Nm∑

k=1

(
λ∗

mk
− λ(s−1)). (4.6)

We then have the following for guaranteeing DP with local averaging:
Theorem 7. Assume the change in the model parameters ∥λ∗

mk
− λ(s−1)∥2 ≤ C, k = 1, . . . , Nm for some

known constant C, where λ∗
mk

is a proposed solution to Equation 4.1, and λ(s−1) is the vector of common
initial values. Then releasing ∆λ̂∗

m is (ε, δ)-DP, with δ ∈ (0, 1) s.t. ε = O(δ, qsample = 1, 1, Gσ), when

∆λ̂∗
m = 1

Nm

[ Nm∑

k=1

(
λ∗

mk
− λ(s−1)) + ξ

]
, (4.7)

where ξ ∼ N (0, σ2 · I).

Proof. See A.6 in the Appendix.

For quantifying the total privacy for S global updates using local averaging, we immediately have the following:
Corollary 8. A composition of S global updates with local averaging using a norm bound C for clipping is
(ε, δ)-DP, with δ ∈ (0, 1) s.t. ε = O(δ, qsample = 1, S, Gσ).

Proof. See A.7 in the Appendix.

As is clear from Corollary 8, with local averaging we pay a privacy cost for each global update, while the local
optimisation steps are free. This the opposite of the DP optimisation result in Theorem 6. As mentioned in
Corollary 8, in practice we generally need to guarantee the norm bound in Theorem 7 by clipping the change
in the model parameters.3

Considering how increasing the local data size affects the DP noise level, we have the following:
Theorem 9. With local averaging, the DP noise standard deviation can be scaled as O( 1

Nm
), where Nm is

the number of local partitions. Therefore, the effect of DP noise will vanish on the local factor level when the
local dataset size and the number of local partitions grow.

Proof. See A.8 in the Appendix.
3We could also enforce DP (including without exponential family factors) by clipping and adding noise directly to the

parameters instead of privatising the change in parameters; the clipping would then enforce the parameters to an ℓ2−norm ball
of radius C around the origin.
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Note that Theorem 9 does not say that the DP noise will necessarily vanish on the global approximation level
if one client gets more data and does more local partitions, since the total noise level depends on the factors
from all the clients. Looking only at Theorem 9, it would seem like increasing the number of local partitions
is always beneficial as it decreases the DP noise effect. However, this is not generally the full picture. Zhang
et al. (2013) have shown that under some assumptions, the convergence rate of mean estimators (similar to
the one we propose) will deteriorate when the number of partitions increases too much. In effect, having
fewer samples from which to estimate each local set of parameters increases the estimator variance, which
hurts convergence. We have experimentally confirmed this effect with local averaging (see Figure 5 in the
Appendix).

The optimal number of local partitions therefore usually balances the decreasing DP noise level with the
increasing estimator variance. However, as we show in Theorem 10, there are important special cases, such
as the exponential family, where there is no trade-off since the number of local partitions can be increased
without affecting the non-DP posterior.
Theorem 10. Assume the effective prior p\j(η), and the likelihood p(xj |η), j ∈ {1, . . . , M} are in a conjugate
exponential family, where η are the natural parameters. Then the number of partitions used in local averaging
does not affect the non-DP posterior.

Proof. See A.9 in the Appendix.

Finally, Theorem 11 shows that assuming a trusted aggregator, the global approximation noise level can stay
constant when adding clients to the protocol, i.e., increasing the number of clients allows every individual
client to add less noise while getting the same global DP guarantees.
Theorem 11. Using local averaging with M clients and a shared number of local partitions Nj = N ∀j
assume the clients have access to a trusted aggregator. Then for any given privacy parameters ε, δ, the noise
standard deviation added by a single client can be scaled as O( 1√

M
) while guaranteeing the same privacy level.

Proof. See A.10 in the Appendix.

4.2.2 Virtual PVI clients

Running (non-private) PVI with virtual clients is described Algorithm 3.

The full local factor for client m is now tm =
∏Nm

k=1 tm,k, which is updated only through the virtual factors,
and only the change in the full product is ever communicated to the server. This means that when all the
virtual factors for client m are in the same exponential family,4 the parameters for the full local factor tm are
given by

λm =
Nm∑

k=1
λm,k, (4.10)

where λm,k are the parameters for the kth virtual factor, and ∆t
(s)
m (θ) at step 5 in Algorithm 2 can be written

as

∆λ∗
m =

Nm∑

k=1
(λ∗

mk
− λ(s−1)).

With virtual PVI clients without DP, doing both local and global updates synchronously corresponds to
a regular non-DP PVI run with a synchronous server and

∑M
j=1 Nj clients. Therefore, all the regular PVI

properties (Ashman et al., 2022) derived with a synchronous server immediately hold for non-DP PVI with
added virtual clients. In particular, the local ELBO optimisation in this case is equivalent to a variational
KL optimisation, and any optimum of the algorithm is also an optimum for global VI.

4With DP, having all factors from a single exponential family is required to bound the sensitivity.
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Algorithm 3 PVI with virtual clients
1: Each client m = 1, . . . , M partitions it’s local data into Nm non-overlapping shards and creates corre-

sponding virtual clients, i.e., separate factors tm,k with parameters λm,k, k = 1, . . . , Nm.
2: for s = 1 to S do
3: Server chooses a subset b(s) ⊆ {1, . . . , M} of clients according to an update schedule and sends the

current global model parameters λ(s−1).
4: Each chosen client m ∈ b(s) updates its virtual clients by locally simulating a single regular PVI

update (steps 3-4 in Algorithm 1) with synchronous update schedule b
(s)
m = {1, . . . , Nm}. The optimised

parameters for the kth virtual client are given by

λ∗
mk

= arg max
q∈Q

[
Eq[log p(xm,k|θ)] − DKL(q(θ|λ)∥p

(s−1)
\m,k (θ))

]
, k = 1, . . . , Nm, (4.8)

where p
(s−1)
\m,k is the cavity distribution:

p
(s−1)
\m,k (θ) ∝ p(θ)

M∏

j ̸=m

tj(θ|λ(s−1)
j )

Nm∏

k′ ̸=k

tm,k′(θ|λ(s−1)
m,k′ ). (4.9)

5: Each chosen client m updates the local factor and sends the update ∆t
(s)
m (θ), defined as

∆t(s)
m (θ) ∝ tm(θ|λ∗

m)
tm(θ|λ(s−1)

m )
∝

Nm∏

k=1

q(θ|λ∗
mk

)
q(θ|λ(s−1)) ,

to the server.
6: Server updates the global model by incorporating the updated local factors:

q(θ|λ(s)) ∝ q(θ|λ(s−1))
∏

m∈b(s)

∆t(s)
m (θ).

7: end for
8: return Final variational approximation q(θ|λ(S)).

DP with virtual PVI clients For ensuring DP with virtual clients, again via noising the change in the
model parameters as in Section 4.2.1, we have:
Theorem 12. Assume the change in the model parameters ∥λ∗

mk
− λ(s−1)∥2 ≤ C, k = 1, . . . , Nm for some

known constant C, where λ∗
mk

is a proposed solution to Equation 4.8, and λ(s−1) is the vector of common
initial values. Then releasing ∆λ̃∗

m is (ε, δ)-DP, with δ ∈ (0, 1) s.t. ε = O(δ, qsample = 1, 1, Gσ), when

∆λ̃∗
m =

Nm∑

k=1

(
λ∗

mk
− λ(s−1)) + ξ, (4.11)

where ξ ∼ N (0, σ2 · I).

Proof. See A.11 in the Appendix.

As an immediate result, Corollary 13 quantifies the total privacy when doing S global updates using virtual
PVI clients:
Corollary 13. A composition of S global updates with virtual PVI clients using a norm bound C for clipping
is (ε, δ)-DP, with δ ∈ (0, 1) s.t. ε = O(δ, qsample = 1, S, Gσ).

Proof. See A.12 in the Appendix.
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As with local averaging in Corollary 8, and contrasting with DP optimisation in Theorem 6, using Corollary 13
we pay a privacy cost for each global update, but the local optimisation steps are free. And as with local
averaging, we usually need to guarantee the assumed norm bound by clipping.

Note that unlike with local averaging in Theorem 9, the noise variance in Equation 4.11 will stay constant
with increasing number of local partitions Nm. Increasing the number of partitions will decrease the relative
effect of the noise if it increases the non-DP sum.

Assuming access to a trusted aggregator, Theorem 14 is a counterpart to Theorem 11 with local averaging:
again, the global approximation noise level can stay constant when adding clients to the protocol, meaning
that each individual client needs to add less noise while maintaining the same global DP guarantees. The
main difference is that with virtual PVI clients each client can choose the number of local partitions freely.

Theorem 14. Assume there are M real clients adding virtual clients, and access to a trusted aggregator.
Then for any given privacy parameters ε, δ, the noise standard deviation added by a single client can be scaled
as O( 1√

M
) while guaranteeing the same privacy level.

Proof. See proof A.13 in the Appendix.

4.3 Summary of technical contributions

We have presented three different implementations of DP-PVI: DP optimisation, that is based on perturbing
the local optimisation in Section 4.1, as well as local averaging in Section 4.2.1 and adding virtual PVI clients
in Section 4.2.2, which are both based on perturbing the global model updates.

The main idea in DP optimisation is to replace the non-DP optimisation procedure by a DP variant, our
main choice being DP-SGD. Hence, DP optimisation inherits all the properties of standard DP-SGD, such as
utility guarantees with convex and strongly convex losses. In the more general case of non-convex losses, DP
optimisation has no known utility guarantees. Considering the privacy guarantees, with DP optimisation each
client enforces DP independently (see Theorem 6), while the global model guarantees result from parallel
composition.

In contrast, local averaging and virtual PVI clients are both based on the general idea of adding local data
partitioning to mitigate the utility loss from DP noise: each client trains several models on disjoint local data
shards, and then combines them for a single global update.

We first showed that local averaging does not fundamentally break the general properties of PVI (see
Appendix A): the local ELBO optimisation can be interpreted as a variational KL optimisation, and an
optimum of the local averaging algorithm is an optimum for global VI. Privacy for local averaging can be
guaranteed by clipping and noising (the change in) the local parameters (see Theorem 7). We showed that
the local average under DP approaches the non-DP average on the local factor level when the number of
local data shards increases (Theorem 9), and that in the special case of conjugate-exponential family there is
no price for increasing the number of local data shards (Theorem 10). Finally, we showed that given access
to a suitable secure primitive, we can leverage the other clients to guarantee DP jointly, thereby reducing the
amount of noise added by each client while keeping the global model guarantees unchanged (Theorem 11).

Adding virtual PVI clients without DP inherits the properties of non-DP PVI with synchronous updates
(e.g., the local ELBO optimisation can be interpreted as a variational KL optimisation, and an optimum of
the virtual PVI clients algorithm is an optimum for global VI). We can guarantee privacy via clipping and
noising (the change in) the local parameters (Theorem 12). We also showed that, as with local averaging,
assuming a suitable secure primitive and guaranteeing DP jointly, the amount of noise added by each client
can be reduced while keeping the global model guarantees unchanged (Theorem 14).

Next, we test our proposed methods in Section 5 under various settings to see how they perform in practice.
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5 Experiments

In this Section we empirically test our proposed methods using logistic regression and Bayesian neural network
(BNN) models. Our code for running all the experiments is openly available from https://github.com/
DPBayes/DPPVI.

We utilise a mean-field Gaussian variational approximation in all experiments. For datasets and prediction
tasks, we employ UCI Adult (Kohavi, 1996; Dua & Graff, 2017) predicting whether an individual has income
> 50k, as well as balanced MIMIC-III health data (Johnson et al., 2016b;a; Goldberger et al., 2000) with an
in-hospital mortality prediction task (Harutyunyan et al., 2019).

An important and common challenge in federated learning is that the clients can have very different amounts
of data, which cannot usually be assumed to be i.i.d. between the clients. We test the robustness of our
approaches to such differences in the data held by each client by using two unbalanced data splits besides the
balanced split. In the balanced case, the data is split evenly between all the clients. In both unbalanced
data cases half of the clients have a significantly smaller share of data than the larger clients. In the first
alternative the small clients only have a few minority class examples, while in the second one they have a
considerably larger fraction than the large clients. We defer the details of the data splitting to Appendix B.

In all experiments, we use sequential PVI when not assuming a trusted aggregator, and synchronous PVI
otherwise. The number of communications is measured as the number of server-client message exchanges
performed by all clients. The actual wall-clock times would depend on the method and implementation: with
sequential PVI only one client can update at any one time but communications do not need encryption, while
with synchronous PVI all clients can update at the same time but the trusted aggregator methods would also
need to account for the time taken by the secure primitive in question. All privacy bounds are calculated
numerically with the Fourier accountant (Koskela et al., 2020).5 The reported privacy budgets include only
the privacy cost of the actual learning, while we ignore the privacy leakage due to hyperparameter tuning.
More details on the experiments can be found in Appendix B.

We use two baselines: i) DP Bayesian committee machines (BCM with same and split prior, Tresp 2000;
Ashman et al. 2022), which are trained with DP-SGD and use a single global communication round to
aggregate DP results from all clients, and ii) a centralised DP-VI, which can be trained in our setting with
DP-SGD when we assume a trusted aggregator without any communication limits (global VI, trusted aggr.,
Jälkö et al. 2017).

To measure performance, we report prediction accuracy on held-out data, as well as model log-likelihood as
we are interested in uncertainty quantification. Model likelihood effectively measures how well the model can
fit unseen data and whether it knows where it is likely to be wrong.

Logistic regression The logistic regression model likelihood is given by

p(y|θ, x) = σ(x̃⊤θ)y(1 − σ(x̃⊤θ))1−y,

where y ∈ {0, 1}, σ(z) = 1
1+e−z is the sigmoid function, and x̃ = [1, x⊤]⊤ is the augmented data vector with a

bias term. In the experiments, we use a standard normal prior for the weights p(θ) = N (θ|0, I) and Monte
Carlo (MC) approximate the posterior predictive distribution.

Figures 1 & 2 show the results for logistic regression on Adult and balanced MIMIC-III datasets, respectively,
for the three different data splits for 10 clients.

Global VI (global VI, trusted aggr.) is a very strong model utility baseline, that is approximately the best we
could hope for. However, as is evident from the results, achieving this baseline requires a trusted aggregator
and it uses orders of magnitude more communications than the DP-PVI implementations.6

The minimal single-round communication baselines are given by the two BCM variants (BCM same, BCM
split). While they are very communication-efficient, the utility varies markedly between the different

5Available from https://github.com/DPBayes/PLD-Accountant/.
6Note that the results for global VI do not depend on the data split and hence this baseline curve is the same for all the splits.
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settings and they are outperformed by the DP-PVI methods (DP optimisation, local avg, virtual) in several
experiments.

For DP-PVI methods, we report results separately without a trusted aggregator (DP optimisation, local
avg, virtual) and with a trusted aggregator (local avg, trusted aggr.; virtual, trusted aggr.). In terms of
communications, all DP-PVI methods are on par with each other: requiring around an order of magnitude
more communications than the minimal communication BCM baselines, and two orders less than the strong
utility global VI baseline that always assumes a trusted aggregator.

Our DP optimisation method performs overall well in terms of model utility, always performing slightly worse
than the strong utility global VI baseline (global VI, trusted aggr.), being on par with DP-PVI using virtual
clients (virtual), and regularly outperforming the BCM baselines (BCM same, BCM split) as well as DP-PVI
with local averaging (local avg).

The performance of our local averaging method without access to a trusted aggregator (local avg) seems
unstable: it lags behind our other two methods (DP optimisation, virtual) as well as the minimal communica-
tion BCM methods (especially BCM split) in several experiments. Given access to a trusted aggregator (local
avg, trusted aggr.) the performance improves, as can be expected from the noise scaling in Theorem 11, in
several settings significantly so. While it now outperforms our DP optimisation (which does not benefit from
the trusted aggregator) and the BCM baselines in many settings, it still regularly lags behind our virtual
PVI clients with a trusted aggregator (virtual, trusted aggr.).

Our virtual PVI clients with no trusted aggregator (virtual) performs consistently well in terms of model
utility: it lags somewhat behind the strong utility baseline (global VI, trusted aggr.), is on par with our DP
optimisation, and outperforms both our local averaging (local avg) and the BCM baselines (BCM same, BCM
split) in several experiments. With a trusted aggregator (virtual, trusted aggr.) the model utility improves in
line with the noise scaling in Theorem 14, sometimes by a clear margin and even reaching the strong utility
baseline (global VI, trusted aggr.) in several settings.

While the results for our local averaging and virtual PVI clients in Figures 1& 2 improve given access to
a trusted aggregator even with a very limited communication budget (compare local avg vs. local avg,
trusted aggr. and virtual vs. virtual, trusted aggr.), the benefits of having the DP noise scale according to
Theorems 11& 14 become more marked with less local data and more clients. Figure 3 shows the results for
Adult data with 200 clients: our DP optimisation, which does not benefit from access to a trusted aggregator,
now performs clearly worse than local averaging (local avg, trusted aggr.) or virtual PVI clients (virtual,
trusted aggr.) which use a trusted aggregator. In contrast to the results in Figures 1& 2, in the more
demanding setting in Figure 3, all of our DP-PVI methods clearly outperform the minimum communication
BCM baselines (BCM same, BCM split) in model utility.

BNNs We expect local averaging and virtual PVI clients to work best when the model has a single,
well-defined optimum, since then the local data partitioning should not have a major effect on the resulting
model. To test the methods with a more complex model, we use a BNN with one fully connected hidden layer
of 50 hidden units, and ReLU non-linearities. Writing fθ(x) for the output from the network with parameters
θ and input x ∈ Rd, the likelihood for y ∈ {0, 1} is a Bernoulli distribution p(y|θ, x) = Bern(y|π), where the
class probability π = σ−1(fθ(x)), i.e., the logit is predicted by the network. We use a standard normal prior
on the weights p(θ) = N (θ|0, I), and MC approximate the predictive distribution:

p(y∗ = 1|x∗, x, y) ≃ 1
nMC

nMC∑

i=1
p(y∗ = 1|θ(i), x∗), θ(i) ∼ q(θ) ∀i.

The results are shown in Figure 4 for Adult data and 10 clients. The minimum communication baselines
(BCM same, BCM split) are very poor in terms of model utility: to achieve good utility with the BNN model
in this setting requires some communication between the clients (compare to BCM same and BCM split
results in Figure 1 using a tighter privacy budget but simpler logistic regression model). Our DP optimisation
works very well in terms of model utility, being almost on par with the high-utility baseline that uses a
trusted aggregator (global VI, trusted aggr.). In contrast, both our local averaging (local avg) and virtual
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Figure 1: (1, 10−5)-DP logistic regression, Adult data with 10 clients: mean over 5 seeds with SEM. a)
balanced split, b) unbalanced split 1, c) unbalanced split 2.
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Figure 2: (1, 10−5)-DP logistic regression, balanced MIMIC-III data with 10 clients: mean over 5 seeds with
SEM. a) balanced split, b) unbalanced split 1, c) unbalanced split 2.
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Figure 3: ( 1
2 , 10−5)-DP logistic regression with Adult data and 200 clients: mean over 5 seeds with SEM. a)

balanced split, b) unbalanced split 1, c) unbalanced split 2.
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PVI clients (virtual) perform clearly worse. They are also much more likely to diverge and seem to require
generally more careful tuning of the hyperparameters to reach any reasonable performance.

6 Discussion

We have proposed three different implementations of DP-PVI, one based on perturbing the local optimisation
(DP optimisation), and two based on perturbing the model updates (local averaging and virtual PVI clients).
As is clear from the empirical results in Section 5, no single method dominates the others in all settings.
Instead, the method needs to be chosen according to the problem at hand. However, we can derive guidelines
for choosing the most suitable method based on the theoretical results as well as on the empirical experiments.

DP optimisation is a good candidate method with simple or complex models regardless of the number of
clients as long as the clients have enough local data. However, with little local data and more clients, since it
cannot easily benefit from secure primitives, the performance can be sub-optimal.

In contrast, local averaging and virtual PVI clients work best with relatively simple models, while the
performance with more complex models can easily lag behind DP optimisation results. However, given access
to a trusted aggregator both methods can leverage other clients to reduce the amount of DP noise required.
Based on our experiments, from the two methods local averaging is harder to tune properly and can be
unstable whereas using virtual PVI clients is a more robust alternative.
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A Appendix: theorems and proofs

This Appendix contains all proofs and some additional theorems omitted from the main text. For easy of
reading, we state all the theorems before the proofs.

Privacy via local optimisation: DP optimisation
Theorem A.1. Running DP-SGD for client-level optimisation in Algorithm 1, using subsampling fraction
qsample ∈ (0, 1] on the local data level for T local optimisation steps in total, with S global updates interleaved
with the local steps, the resulting model is (ε, δ)-DP, with δ ∈ (0, 1) s.t. ε = O(δ, qsample, T, Gσ).

Proof. Standard DP-SGD theory (Song et al., 2013; Bassily et al., 2014; Abadi et al., 2016) ensures that the
local optimised approximation is DP after a given number of local optimisation steps by a given client m,
when on every local step we clip each per-example gradient to enforce a known ℓ2-norm bound C, add iid
Gaussian noise with standard deviation σ scaled by C to each dimension, and the privacy amplification by
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subsampling factor qsample for the sampling without replacement function (see Definition 4) is calculated from
the fraction of local data utilised on each step. Since the global update does not access the sensitive data, the
global model is DP w.r.t. data held by client m after the global update due to post-processing guarantees.
Hence, when accounting for DP for client m, the total number of compositions is T , regardless of the number
of global updates. The total privacy is therefore (ε, δ), when δ is such that ε = O(δ, qsample, T, Gσ).

With Theorem A.1, DP is guaranteed independently by each client w.r.t. their own data, and hence the
global model will have DP guarantees w.r.t. any clients’ data via parallel composition, i.e., the global
model is (ϵmax, δmax)-DP w.r.t. any single training data sample with ϵmax = max{ϵ1, . . . , ϵM }, δmax =
max{δ1, . . . , δM }, where ϵm, δm are the parameters used by client m. In all the experiments in this paper, we
use a common (ϵ, δ) budget shared by all the clients, and sampling without replacement on the local data
level as the subsampling method.

Properties of non-DP local averaging The following properties are the local averaging counterparts
to the regular PVI properties shown by Ashman et al. (2022). We write nm,k for the number of samples in
shard k at client m after the initial partitioning, so

∑Nm

k=1 nm,k = nm.

Property A.2 (cf. Property 2.1 of Ashman et al. 2022). Maximizing the local ELBO

L(s)
m,k(q(θ)) :=

∫
dθq(θ) log [p(xm,k|θ)]Nmq(s−1)(θ)

q(θ)t(s−1)
m (θ)

is equivalent to the KL optimization

q(s)(θ) = arg min
q

DKL(q(θ)∥p̂
(s)
m,k(θ)),

where p̂
(s)
m,k(θ) = 1

Ẑ
(s)
m,k

p(θ)
∏

j ̸=m t
(s−1)
j (θ) · [p(xm,k|θ)]Nm is the tempered tilted distribution before global update

s for local shard k at client m.

Proof. The proof is identical to the one in (Ashman et al., 2022, A.1) when we replace the full local likelihood
p(xm|θ) by the tempered likelihood [p(xm,k|θ)]Nm for shard k.

Property A.3 (cf. Property 2.2 of Ashman et al. 2022). Let q∗(θ) = p(θ)
∏M

j=1 t∗
j (θ) be a fixed point for

local averaging, L∗
m,k(q(θ)) =

∫
dθq(θ) log q∗(θ)[p(xm,k|θ)]Nm

q(θ)t∗
m(θ) local ELBO at the fixed point w.r.t. shard k at

client m, and L(q(θ)) =
∫

dθq(θ) log p(θ)p(x|θ)
q(θ) global ELBO. Then

1.
∑M

j=1
1

Nj

∑Nj

k=1 L∗
j,k(q∗(θ)) = L(q∗(θ)) − log Zq∗ .

2. If q∗(θ) = arg maxq Lj,k(q(θ)) for all j, k, then q∗(θ) = arg maxq L(q(θ)).
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Proof. 1. Directly from the definition we have

L(q∗(θ)) − log Zq∗ =
∫

dθq∗(θ) log p(θ)p(x|θ)
q∗(θ)Zq∗

(A.1)

=
∫

dθq∗(θ)[log p(x|θ) − log
p(θ)

∏M
j=1 t∗

j (θ)
p(θ) ] (A.2)

=
M∑

j=1

∫
dθq∗(θ)[log

Nj∏

k=1
p(xj,k|θ) − log t∗

j (θ)] (A.3)

=
M∑

j=1

∫
dθq∗(θ)[ 1

Nj
Nj

Nj∑

k=1
log p(xj,k|θ) − log

q∗(θ)t∗
j (θ)

q∗(θ) ] (A.4)

=
M∑

j=1

1
Nj

Nj∑

k=1

∫
dθq∗(θ)[log q∗(θ)[p(xj,k|θ)]Nj

q∗(θ)t∗
j (θ) ] (A.5)

=
M∑

j=1

1
Nj

Nj∑

k=1
L∗

j,k(q∗(θ)). (A.6)

Assume q∗(θ) = arg maxq Lj,k(q(θ)) for all j, k. Then q∗(θ) = arg maxq L∗
j,k(q(θ)) for all j, k implying that

d
dλq

L∗
j,k(q∗(θ)) = 0 for all j, k. Furthermore, since q∗(θ) is a maximizer, the Hessian d2

dλqdλT
q

L∗
j,k(q∗(θ)) is

negative definite for all j, k. Looking at the first part of the proof we can write

d

dλq
L(q∗(θ)) =

M∑

j=1

1
Nj

Nj∑

k=1

d

dλq
L∗

j,k(q∗(θ)) = 0, and (A.7)

d2

dλqdλT
q

L(q∗(θ)) =
M∑

j=1

1
Nj

Nj∑

k=1

d2

dλqdλT
q

L∗
j,k(q∗(θ)). (A.8)

From Equation A.7 we see that q∗(θ) is a fixed point of L(q(θ)), and since the Hessian in Equation A.8 can
be expressed by summing negative definite matrices and multiplying them by positive numbers, the resulting
Hessian is also negative definite, and hence q∗(θ) maximizes the global ELBO L(q(θ)).

Property A.4 (cf. Property 3.2 of Ashman et al. 2022). Assume the prior and approximate likelihood factors
are in the unnormalized exponential family tm(θ) = tm(θ; λm) = exp(λT

mT (θ)), so the variational distribution
is in the normalized exponential family q(θ) = exp(λT

q T (θ) − A(λq)). Then a stationary point of the local

ELBO at global update s for the kth local model at client m, dL(s)
m,k

(qk(θ))
dλq

= 0, implies

λ
(s)
m,k = Nm

d

dµq(s−1)
Eq(s−1) [log p(xm,k|θ)].

In addition, a stationary point for all Nm local models’ ELBO implies

λ(s)
m = 1

Nm

Nm∑

k=1
λ

(s)
m,k = d

dµq(s−1)
Eq(s−1) [log p(xm|θ)],

which matches the regular PVI fixed point equation.

Proof. Writing L(s)
m,k(qk(θ)) =

∫
dθqk(θ) log [p(xm,k|θ)]Nm q(s−1)(θ)

qk(θ)t
(s−1)
m (θ)

and noting that all Nm local models are

started in parallel from the same point (so µ
q

(s−1)
k

= µq(s−1) , q
(s−1)
k = q(s−1) ∀k), then following the proof in
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(Ashman et al., 2022, Supplement A.4) with minor changes establishes the first claim:

λ
(s)
m,k = Nm

d

dµq(s−1)
Eq(s−1) [log p(xm,k|θ)].

Looking now at the average of local parameters we have

λ(s)
m = 1

Nm

Nm∑

k=1
λ

(s)
m,k (A.9)

= d

dµq(s−1)
Eq(s−1) [

Nm∑

k=1
log p(xm,k|θ)] (A.10)

= d

dµq(s−1)
Eq(s−1) [log p(xm|θ)], (A.11)

where the last equality assumes that the data are conditionally independent given the model parameters.

Property A.5 (cf. Property 5 of Bui et al. 2018). Under the assumptions of Prop. A.4, using local averaging
with parallel global updates result in identical dynamics for q(θ), given by the following equation, regardless of
the partition of the data employed:

λ(s)
q = λ0 + d

dµq(s−1)
Eq(s−1) [log p(x|θ)] = λ0 +

∑
j

nj∑

i=1

d

dµq(s−1)
Eq(s−1) [log p(xi|θ)],

where xi is the ith data point, and nj is the number of local samples on client j.

Proof. With M clients doing a parallel update, from Property A.4 we have

λ(s)
q = λ0 +

M∑

j=1
λ

(s)
j (A.12)

= λ0 +
M∑

j=1

d

dµq(s−1)
Eq(s−1) [log p(xj |θ)] (A.13)

= λ0 +
M∑

j=1

nj∑

k=1

d

dµq(s−1)
Eq(s−1) [log p(xm,k|θ)], (A.14)

where Equation A.14 follows due to data being conditionally independent given the model parameters.

On the other hand, with M = 1 Property A.4 reads

λ(s)
q = λ0 + d

dµq(s−1)
Eq(s−1) [log p(x|θ)] (A.15)

= λ0 +
n∑

i=1

d

dµq(s−1)
Eq(s−1) [log p(xi|θ)], (A.16)

which matches Equation A.14, since n =
∑M

j nj for any M .

DP with local averaging
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Theorem A.6. Assume the change in the model parameters ∥λ∗
mk

− λ(s−1)∥2 ≤ C, k = 1, . . . , Nm for some
known constant C, where λ∗

mk
is a proposed solution to Equation 4.1, and λ(s−1) is the vector of common

initial values. Then releasing ∆λ̂∗
m is (ε, δ)-DP, with δ ∈ (0, 1) s.t. ε = O(δ, qsample = 1, 1, Gσ), when

∆λ̂∗
m = 1

Nm

[ Nm∑

k=1

(
λ∗

mk
− λ(s−1)) + ξ

]
, (A.17)

where ξ ∼ N (0, σ2 · I).

Proof. Considering neighbouring datasets as in the DP definition 2, denoted by m, m′, only one of the local
models is affected by the differing element, w.l.o.g. assume it is λ∗

m1 . For the difference in the sum query
between neighbouring datasets we therefore immediately have

∥
Nm∑

k=1

(
λ∗

mk
− λ(s−1)) −

Nm∑

k=1

(
λ∗

m′
k

− λ(s−1))∥2 = ∥λ∗
m1 − λ(s−1) − λ∗

m′
1

+ λ(s−1)∥2 (A.18)

≤ ∥λ∗
m1 − λ(s−1)∥2 + ∥λ∗

m′
1

− λ(s−1)∥2 (A.19)
≤ 2C. (A.20)

The sum query therefore corresponds to a single call to the Gaussian mechanism with sensitivity 2C and noise
standard deviation σ, and since DP guarantees are not affected by post-processing such as taking average,
the claim follows.

Corollary A.7. A composition of S global updates with local averaging using a norm bound C for clipping is
(ε, δ)-DP, with δ ∈ (0, 1) s.t. ε = O(δ, qsample = 1, S, Gσ).

Proof. Since each global update is DP by Theorem A.6 when we enforce the norm bound by clipping, the
result follows immediately by composing over the global updates.

Theorem A.8. With local averaging, The DP noise standard deviation can be scaled as O( 1
Nm

), where Nm

is the number of local partitions. Therefore, the effect of DP noise will vanish on the local factor level when
the local dataset size and the number of local partitions grow.

Proof. Rewriting Equation A.17 as

∆λ̂∗
m = 1

Nm

( Nm∑

k=1
λ∗

mk
− λ(s−1)) + ξ

Nm
, (A.21)

where ξ ∼ N (0, σ2 · I).

Letting the number of local partitions grow, we immediately have

lim
Nm→∞

∆λ̂∗
m = lim

Nm→∞
∆λ∗

m, (A.22)

where ∆λ∗
m is the corresponding non-DP average.

Theorem A.9. Assume the effective prior p\j(η), and the likelihood p(xj |η), j ∈ {1, . . . , M} are in a conjugate
exponential family, where η are the natural parameters. Then the number of partitions used in local averaging
does not affect the non-DP posterior.

Proof. To avoid notational clutter, we drop the client index j in the rest of this proof, and simply write, e.g.,
x for the local data xj and p(η) for the effective prior p\j(η).
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Due to the conjugacy we can write the effective prior and the likelihood as

p(x|η) = h(x) exp(ηT T (x) − A(η)), (A.23)
p(η|τ0, n0) = H(τ0, n0) exp(τT

0 η − n0A(η)), (A.24)

where T are the sufficient statistics, A is the log-partition function, τ0, n0 are the effective prior parameters,
and h, H are some suitable functions determined by the exponential family.

The local posterior given a vector x of n iid observations is in the same exponential family:

p(η|x, τ0, n0) ∝ exp
(
(τ0 +

n∑

i=1
T (xi))T η − (n0 + n)A(η)

)
,

so the changes in parameters when updating from prior to posterior are

τ0 → τ0 +
n∑

i=1
T (xi) (A.25)

n0 → n0 + n. (A.26)

Now partitioning the data into N shards, each with nk = n
N samples, together with the tempered (cold)

likelihood p(x|η)N results in a posterior

pshard(η|xk, τ0, n0) ∝ exp((τ0 +
∑

ki

NT (xki
))T η − (n0 + Nnk)A(η)),

so the updates for shard k are

τ0 → τ0 +
∑

ki

NT (xki) (A.27)

n0 → n0 + Nnk. (A.28)

Averaging over the posterior parameters corresponding to the N local data shards we have updates

τ0 → 1
N

N∑

k=1

(
τ0 +

∑

ki

NT (xki
)
)

(A.29)

=τ0 +
N∑

k=1

∑

ki

T (xki) (A.30)

=τ0 +
n∑

i=1
T (xi), and (A.31)

n0 → 1
N

N∑

k=1

(
n0 + Nnk

)
(A.32)

=n0 + n, (A.33)

which match the expressions for the regular local posterior using full local data given in Equation A.25 and
Equation A.26.

Figure 5 shows the effects of changing the number of local data shards using a logistic regression model
with and without DP. As discussed in Section 4.2.1, when the assumptions of Theorem A.9 are not satisfied,
we would expect that increasing the number of local data partitions can lead to slower convergence due
to increased estimator variance. This can be seen in Figure 5 a). In contrast, under privacy constraints
increasing the number of local partitions can lead to improved performance, since adding local partitioning
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Figure 5: Logistic regression, balanced MIMIC-III data with 10 clients: mean over 5 seeds with SEM,
balanced split. a) Without DP, increasing the number of local partitions can lead to slower convergence, b)
non-DP with clipping norm C, and (4, 10−5)-DP: wihout privacy increasing the number of local partitions
does not help (non-DP with clipping C = 1000), or even hurts performance (non-DP with clipping C = 1),
while with DP, increasing the number of local partitions mitigates the effect of DP noise.

can mitigate the DP noise effect, as seem in Figure 5 b). Note that increasing the number of local partitions
can also increase the bias due to clipping, especially with tight clipping bound. In this experiment, we use
same fixed hyperparameters in all runs: number of global updates or communication rounds = 5, number of
local steps = 50, learning rate = 10−2, damping = .4.

Theorem A.10. Using local averaging with M clients and a shared number of local partitions Nj = N ∀j
assume the clients have access to a trusted aggregator. Then for any given privacy parameters ε, δ, the noise
standard deviation added by a single client can be scaled as O( 1√

M
) while guaranteeing the same privacy level.

Proof. Let η ∼ N (0, σ2 ·I), and denote by σ0 the noise standard deviation that locally guarantees the required
DP level for every client with some known norm bound C (possibly due to clipping), and assign equal noise
shares over clients. The message for a synchronous global update s is

M∏

j=1
∆t(s)

m =
M∑

j=1

( 1
N

[
N∑

k=1
(λ∗

jk
− λ(s−1)) + η]

)
(A.34)

= 1
N

( M∑

j=1

N∑

k=1
(λ∗

jk
− λ(s−1)) +

M∑

j=1
η
)
. (A.35)
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To match the target local noise standard deviation with the aggregated noise standard deviation we need
M∑

j=1
σ2 ≥ σ2

0 (A.36)

⇔ σ ≥ σ0√
M

. (A.37)

Setting σ to match the lower bound, we see that the total noise magnitude on the global approximation level
in Equation A.35 does not change with M .

Looking at Theorem A.10, when the global noise level is constant, adding a client to the protocol will reduce
the relative effect of the noise in Equation A.35 if it increases the non-noise part in the sum. On the other
hand, on global convergence we would have

M∑

j=1

( 1
N

N∑

k=1
λ∗

jk
− λ(s−1)) = 0,

so an update near a global optimum will be mostly noise.

When applying Theorem A.10, DP is guaranteed jointly on the global model level, while the local approx-
imations have less noise than required for the stated privacy level (although they might still have some
valid DP guarantees). In contrast, when each client guarantees DP independently via Theorem A.6, the
global model will be (ϵmax, δmax)-DP w.r.t. any single training data sample by parallel composition with
ϵmax = max{ϵ1, . . . , ϵM }, δmax = max{δ1, . . . , δM }, where ϵm, δm are the parameters used by client m. In all
the experiments in this paper, we use a common (ϵ, δ) budget shared by all the clients.

DP with virtual PVI clients
Theorem A.11. Assume the change in the model parameters ∥λ∗

mk
− λ(s−1)∥2 ≤ C, k = 1, . . . , Nm for some

known constant C, where λ∗
mk

is a proposed solution to Equation 4.8, and λ(s−1) is the vector of common
initial values. Then releasing ∆λ̃∗

m is (ε, δ)-DP, with δ ∈ (0, 1) s.t. ε = O(δ, qsample = 1, 1, Gσ), when

∆λ̃∗
m =

Nm∑

k=1

(
λ∗

mk
− λ(s−1)) + η, (A.38)

where η ∼ N (0, σ2 · I).

Proof. Almost the same as the proof of Theorem A.6.

Corollary A.12. A composition of S global updates with virtual PVI clients using a norm bound C for
clipping is (ε, δ)-DP, with δ ∈ (0, 1) s.t. ε = O(δ, qsample = 1, S, Gσ).

Proof. Since each global update is DP by Theorem A.11 when we enforce the norm bound by clipping, the
result follows immediately by composing over the global updates.

Theorem A.13. Assume there are M real clients adding virtual clients, and access to a trusted aggregator.
Then for any given privacy parameters ε, δ, the noise standard deviation added by a single client can be scaled
as O( 1√

M
) while guaranteeing the same privacy level.

Proof. Similar to the proof for Theorem A.10 with obvious modifications.

As with local averaging, Theorem A.13 gives joint DP guarantees on the global model level. In contrast,
when each client guarantees DP independently with Theorem A.11, the global model will be (ϵmax, δmax)-
DP w.r.t. any single training data sample by parallel composition with ϵmax = max{ϵ1, . . . , ϵM }, δmax =
max{δ1, . . . , δM }, where ϵm, δm are the parameters used by client m. And again, in all the experiments we
use a common (ϵ, δ) budget shared by all the clients.
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B Appendix: experimental details

This appendix contains details of the experimental settings omitted from Section 5.

With Adult data, we first combine the training and test sets, and then randomly split the whole data with
80% for training and 20% for validation. With MIMIC-III data, we first preprocessing the data for the
in-hospital mortality prediction task as detailed by Harutyunyan et al. (2019).7. Since the preprocessed
data is very unbalanced and leaves little room for showing the differences between the methods (a constant
prediction can reach close to 90% accuracy while a non-DP prediction can do some percentage points better),
we first re-balance the data by keeping only as many majority label samples as there are in the minority class.
This leaves 5594 samples, which are then randomly split into training and validation sets, giving a total of
4475 samples of training data to be divided over all the clients.

We divide the data between M clients using the following scheme8: half of the clients are small and the other
half large, with data sizes given by

nsmall =
⌊ n

M
(1 − ρ)

⌋
, nlarge =

⌊ n

M
(1 + ρ)

⌋
,

with ρ ∈ [0, 1]. ρ = 0 gives equal data sizes for everyone while ρ = 1 means that the small clients have no
data. For creating unbalanced data distributions, denote the fraction of majority class samples by λ. Then
the target fraction of majority class samples for the small clients is parameterized by κ:

λtarget
small = λ + (1 − λ) · κ,

where having κ = 1 means small clients only have majority class labels, and κ = − λ
1−λ implies small clients

have only minority class labels. For large clients the labels are divided randomly.

We use the following splits in the experiments:

ρ κ nsmall λsmall λlarge

balanced 0 0 2442 .76 ≃ .76
unbalanced 1 .75 .95 610 .99 ≃ .73
unbalanced 2 .7 -3 732 .03 ≃ .89

Table 2: Adult data, 10 clients data split.

ρ κ nsmall λsmall λlarge

balanced 0 0 122 .75 .7-.8
unbalanced 1 .75 .95 30 .97 .67-.78
unbalanced 2 .7 -3 36 .03 .85-.93

Table 3: Adult data, 200 clients data split.

ρ κ nsmall λsmall λlarge

balanced 0 0 447 .5 ≃ .5
unbalanced 1 .75 .95 111 .97 .41-.44
unbalanced 2 .7 -.5 134 .25 .51-.58

Table 4: Balanced MIMIC-III data, 10 clients data split.

We use Adam (Kingma & Ba, 2014) to optimise all objective functions. In general, depending e.g. on the
update schedule, even the non-DP PVI can diverge (see Ashman et al. 2022). We found that DP-PVI using

7The code for preprocessing is available from https://github.com/YerevaNN/mimic3-benchmarks
8The data splitting scheme was originally introduced by Sharma et al. (2019) in a workshop paper that combines DP with

PVI. The current paper is otherwise completely novel and not based on the earlier workshop version.
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any of our approaches is more prone to diverge than non-DP PVI, while DP optimisation is more stable
than local averaging or virtual PVI clients. To improve model stability, we use some damping in all the
experiments. When damping with a factor ρ ∈ (0, 1], at global update s the model parameters λ(s) are set to

(1 − ρ) · λ(s−1) + ρ · λ(s).

We use grid search to optimise all hyperparameters in terms of predictive accuracy and model log-likelihood
using 1 random seed, and then run 5 independent random seeds using the best hyperparameters from the
1 seed runs. The reported results with 5 random seeds are the best results in terms of log-likelihood for
each model. With BNNs using local averaging or virtual PVI clients some seeds diverged when using the
hyperparameters optimised using a single seed. These seeds were rerun with the same hyperparameter settings
to produce 5 full runs. This might give the methods some extra advantage in the comparison, but since they
still do not work too well, we can surmise that the methods are not well suited for the task.

To approximate the posterior predictive distributions we use a Monte Carlo estimate with 100 samples:

p(y∗|x∗, y, x) ≃ 1
100

100∑

iMC =1
p(y∗|x∗, θiMC

), θiMC
∼ q(θ).
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